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Abstract

We provide a computationally efficient black-box reduction from mechanism design to al-
gorithm design in very general settings. Specifically, we give an approximation-preserving re-
duction from truthfully maximizing any objective under arbitrary feasibility constraints with
arbitrary bidder types to (not necessarily truthfully) maximizing the same objective plus virtual
welfare (under the same feasibility constraints). Our reduction is based on a fundamentally new
approach: we describe a mechanism’s behavior indirectly only in terms of the expected value it
awards bidders for certain behavior, and never directly access the allocation rule at all.

Applying our new approach to revenue, we exhibit settings where our reduction holds both
ways. That is, we also provide an approximation-sensitive reduction from (non-truthfully) max-
imizing virtual welfare to (truthfully) maximizing revenue, and therefore the two problems are
computationally equivalent. With this equivalence in hand, we show that both problems are
NP-hard to approximate within any polynomial factor, even for a single monotone submodular
bidder.

We further demonstrate the applicability of our reduction by providing a truthful mechanism
maximizing fractional max-min fairness. This is the first instance of a truthful mechanism that
optimizes a non-linear objective.
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1 Introduction

Mechanism design is the problem of optimizing an objective subject to “rational inputs.” The
difference to algorithm design is that the inputs to the objective are not known, but are owned
by rational agents who need to be provided incentives in order to share enough information about
their inputs such that the desired objective can be optimized. The question that arises is how much
this added complexity degrades our ability to optimize objectives, namely

How much more computationally difficult is mechanism design for a certain objective
compared to algorithm design for the same objective?

This question has been at the forefront of algorithmic mechanism design, starting already with
the seminal work of Nisan and Ronen [27]. In a non-Bayesian setting, i.e. when no prior distri-
butional information is known about the inputs, we now have strong separation results between
algorithm and mechanism design. Indeed, a sequence of recent breakthroughs [28, 8, 21, 23] has
culminated in combinatorial auction settings where welfare can be optimized computationally effi-
ciently to within a constant factor for “honest inputs,” but it cannot be computationally efficiently
optimized to within a polynomial factor for “rational inputs,” subject to well-believed complexity
theoretic assumptions. Besides, the work of Nisan and Ronen studied the problem of minimizing
makespan on unrelated machines, which can be well-approximated for honest machines, but whose
approximability for rational machines still remains unknown.

In a Bayesian world, where every input is drawn from some known distribution, algorithm and
mechanism design appear more tightly connected. Indeed, a sequence of surprising works [26, 25, 4]
have established that mechanism design for welfare optimization in an arbitrary environment1

can be computationally efficiently reduced to algorithm design in the same environment, in an
approximation-preserving way. A similar reduction has been recently discovered for the revenue
objective [11, 12] in the case of additive bidders.2 Here, mechanism design for revenue optimization
in an arbitrary additive environment (computationally efficiently) reduces to algorithm design for
virtual welfare optimization in the same environment, in an approximation-preserving manner. The
natural question is whether such mechanism- to algorithm-design reduction is achievable for general
bidder types (i.e. beyond additive) and general objectives (i.e. beyond revenue and welfare). This
is what we achieve in this paper.

Informal Theorem 1. There is a generic, computationally efficient, approximation-preserving
reduction from mechanism design for an arbitrary concave objective O, under arbitrary feasibility
constraints and arbitrary allowable bidder types, to algorithm design, under the same feasibility
constraints and allowable bidder types, and objective:

• O plus virtual welfare, if O is an allocation-only objective (i.e. O depends only on the alloca-
tion chosen and not on payments made).;

• O plus virtual welfare plus virtual revenue, if O is a general objective (i.e. O may depend on
the allocation chosen as well as payments made);

• virtual welfare, if O is the revenue objective.

A formal statement of our result is provided as Theorem 4 in Section C.2. Specifically, we provide
a Turing reduction from theMulti-Dimensional Mechanism Design Problem (MDMDP) to the Solve
Any-Differences Problem (SADP). MDMDP and SADP are formally defined in Section 5.1. They

1An environment constrains the feasible outcomes of the mechanism as well as the allowable bidder types, or
valuations. The latter map outcomes to value units.

2A bidder is additive if her value for a bundle of items is just the sum of her values for each item in the bundle.
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are both parameterized by a set F , specifying feasibility constraints on outcomes,3 a set V of
functions, specifying allowable types of bidders,4 and an objective function O, mapping a profile
~t ∈ Vm of bidder types (m is the number of bidders), a distribution X ∈ ∆(F) over feasible
outcomes, and a randomized price vector P , to the reals.5 In terms of these parameters:

• MDMDP is the problem of designing a mechanism M that maximizes O in expectation over
the types t1, . . . , tm of the bidders, given a product distribution over Vm for t1, . . . , tm, and
assuming that the bidders play M truthfully. M is restricted to choose outcomes in F with
probability 1, it must be Bayesian Incentive Compatible, and Individually Rational.

• SADP is input a type vector t1, . . . , tm ∈ V, a list of hyper-types t1, . . . , tk ∈ V
∗, where V∗ is

the closure of V under addition and positive scalar multiplication, and weights c0 ∈ R≥0 and
c1, . . . , cm ∈ R. The goal is to choose a distribution X over outcomes and a randomized price
vector P so that

c0O(~t,X, P ) +
∑

i

ciE[Pi] + (tj(X) − tj+1(X)).

is maximized for at least one j ∈ {1, . . . , k − 1}. The first term in the above expression is a
scaled version of O, the second is a “virtual revenue” term (where ci is the virtual currency
that bidder i uses), and the last term is a “virtual welfare” term (of a pair of adjacent hyper-
types the first of which is scaled by 1 and the other by −1). The name “Solve Any-Differences
Problem” alludes to the freedom of choosing any value of j and then optimizing.

Notice that MDMDP is a mechanism design problem, where our task is to optimize objective O
given distributional information about the bidder types. On the other hand, SADP is an algorithm
design problem, where types and hyper-types are perfectly known and the task is to optimize the
sum of the same objective O plus a virtual revenue and welfare term. In this terminology, Theorem 4
(stated above as Informal Theorem 1) establishes that there is a computationally efficient reduction
from α-approximating MDMDP to α-approximating SADP, for any value α of the approximation,
as long as O is concave in X and P .6

It is worth stating a few caveats of our reduction:

1. First, it is known from [17] that it is not possible to have a general reduction from mechanism
design to algorithm design with the exact same objective. This motivates the need to include
the extra terms of virtual revenue and virtual welfare in the objective of SADP.

2. If O is allocation-only, i.e. it does not depend on the price vector P , then all coefficients
c1, . . . , cm can be taken 0 in the reduction from MDMDP to SADP. Hence, to α-approximate
MDMDP it suffices to be able to α-optimize O plus virtual welfare. In Sections 1.2 and 6,
we discuss fractional max-min fairness as an example of such an objective, providing optimal
mechanisms for it through our reduction.

3. If O is price-only, i.e. it does not depend on the outcome X, then the objective in SADP
is separable into a price-dependent component (O plus virtual revenue) and an outcome-

3These could encode, e.g., matching constraints of a collection of items to the bidders, or possible locations to
build a public project, etc.

4A type t of a bidder is a function mapping F to the reals, specifying how much the bidder values every outcome
in F . If a set V of functions parameterizes one of our problems, then all bidders are restricted to have types in V.
E.g., F may be R

ℓ and V may contain all additive functions over F .
5E.g. O could be revenue (in this case, O(~t, X, P ) = E[

∑
i Pi]), or it could be welfare (in this case, O(~t,X, P ) =∑

i
ti(X), where ti(X) = Ex←X [t(x)] is the expected value of type ti for the distribution over outcomes X), or it

could be some fairness objective such as O(~t,X, P ) = mini ti(X).
6Formally O is concave in X and P if for any (X1, P1) and (X2, P2) and any c ∈ [0, 1] and ~t, O(~t, cX1 + (1 −

c)X2, cP1 + (1 − c)P2) ≥ cO(~t,X1, P1) + (1 − c)O(~t,X2, P2), where cX1 + (1 − c)X2 is the mixture of distributions
X1 and X2 over outcomes, with mixing weights c and 1− c respectively.
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dependent component (virtual welfare). Hence, our reduction implies that to α-approximate
MDMPD it suffices to be able to α-optimize each of these components separately.

4. If O is the revenue objective (this is a special case of 3), the price-dependent component in
SADP is trivial to optimize. In this case, to α-approximate MDMPD it suffices to be able to
α-optimize virtual welfare (i.e. we can take c0 = c1 = · · · = cm = 0 in the SADP instance
output by the reduction). See Theorem 2. Additionally we note the following.

(a) This special case of our reduction already generalizes the results of [11] to arbitrary
types. Recall that the reduction of [11] from MDMDP to virtual-welfare optimization
could only accommodate additive types.

(b) For a special family V of functions, we provide a reduction in the other direction, i.e. from
SADP to MDMDP. As a corollary of this reduction we obtain strong inapproximability
results for optimal multi-dimensional mechanism design with submodular bidders. We
discuss this in more detail in Section 1.1.

5. Finally, our generic reduction from MDMDP to SADP can take the number k of hyper-types
input to SADP to be 2. We define SADP for general k for flexibility. In particular, general
k enables our inapproximability result for optimal mechanism design via a reduction from
SADP (general k) to MDMDP.

1.1 Revenue

Our framework described above provides reductions from mechanism design for some arbitrary
objective O to algorithm design for the same objective O plus a virtual revenue and a virtual
welfare term. As pointed out earlier in this section, we can’t avoid some modification of O in
the algorithm design problem sitting at the output of a general reduction such as ours, due to
the impossibility result of [17]. Nevertheless, there could very well be other modified objectives
that a general reduction could be reducing to, with better or worse algorithmic properties. The
question that arises is this: Could we be hurting ourselves focusing on SADP as an algorithmic
vehicle to solve MDMDP? Our previous work on revenue maximization for additive bidders [11]
exhibits very general F ’s where the answer is “no,” motivating our generalization here to non-
additive bidders and general objectives. Indeed, we illustrate the reach of our new framework in
Section 1.2 by providing optimal mechanisms for non-linear objectives, an admittedly difficult and
under-developed topic in Bayesian mechanism design [17, 14].

Here we provide a different type of evidence for the tightness of our approach via reductions
going the other way, i.e. from SADP to MDMDP. Recall that MDMDP(F ,V,Revenue) reduces to
solving SADP instances, which satisfy c0 = c1 = · · · = cm = 0 and therefore only have a virtual
welfare component depending on some t1, . . . , tk ∈ V

∗. In Section 4, we identify conditions for a
collection of functions t1, . . . , tk ∈ V

∗ under which SADP reduces to MDMDP, showing that for
such instances solving SADP is unavoidable for solving MDMDP. Indeed, our reduction is strong
enough that we obtain very strong inapproximability results for revenue optimization, even when
there is a single monotone submodular bidder. To the best of our knowledge our result is the first
inapproximability result for optimal mechanism design.

Informal Theorem 2. MDMDP(2[n], monotone submodular functions, revenue) cannot be ap-
proximated to within any polynomial factor in polynomial time, if we are given value or demand
oracle access to the sub-modular functions in the support of the bidders distributions,7 even if there

7We explain the difference between value and demand oracle access in Section 4.
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is only one bidder. The same is true if we are given explicit access to these functions (as Turing
machines) unless NP ⊆ RP .

1.2 Fractional Max-Min Fairness

Certainly revenue and welfare are the most widely studied objectives in mechanism design. Nev-
ertheless, resource allocation often requires optimizing non-linear objectives such as the fairness
of an allocation, or the makespan of some scheduling of jobs to machines. Already the seminal
paper of Nisan and Ronen studies minimizing makespan when scheduling jobs to selfish machines,
in a non-Bayesian setting. Following this work, a lot of algorithmic mechanism design research has
focused on non-linear objectives in non-Bayesian settings (see, e.g., [18, 3] and their references),
but positive results have been scarce. More recently, research has studied non-linear objectives in
Bayesian settings [17, 14]. While [17] provide impossibility results, the results of [14] give hope that
non-linear objectives might be better behaved in Bayesian settings. In part, this is our motivation
for providing an algorithmic framework for general objectives in this work.

As a concrete example of the reach of our techniques, we provide optimal mechanisms for a (non-
linear) max-min fairness objective in Section 6. The setting we solve is this: There are n items
that can be allocated to m additive bidders, subject to some constraints F . F could be matching
constraints, matroid constraints, downwards-closed constraints, or more general constraints. Now,
given a distribution X over allocations in F , how fair is it? E.g., if there is one item and two
bidders with value 1 for the item, what is the fairness of a randomized allocation that gives the
item to each bidder with probability 1

2? Should it be 0, because with probability 1, exactly one
bidder gets value 0 from the allocation? Or, should it be 1/2 because each bidder gets an expected
value of 1/2? Clearly, both are reasonable objectives, but we study the latter. Namely, we define
the fractional max-min fairness objective as:

O(~t,X) = min
i

ti(X).

We obtain the following result, which is stated formally as Corollary 6 in Section 6.

Informal Theorem 3. Let G be a polynomial-time α-approximation algorithm for

Max-Weight(F): Given weights (wij)ij , find S ∈ F maximizing
∑

(i,j)∈S

wij .

With black-box access to G, we can α-approximate MDMDP(F , additive functions,O) in polynomial
time. For instance, if F are matching constraints, matroid constraints, or the intersection of two
matroids, we can optimally solve MDMDP(F , additive functions,O) in polynomial-time.

1.3 Related Work

Revenue Maximization. There has been much work in recent years on revenue maximization
in multi-dimensional settings [1, 2, 6, 9, 10, 13, 15, 16, 22, 24]. Our approach is most similar to
that of [11, 12], which was recently extended in [5]. These works solved the revenue maximization
problem for additive bidders via a black-box reduction to welfare maximization. In [5], numerous
extensions are shown that accommodate risk-averse buyers, ex-post budget constraints, and more.
But both approaches are inherently limited to revenue maximization and additive bidders. Even
just within the framework of revenue maximization, our work breaks through a major barrier, as
every single previous result studies only additive bidders.
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Hardness of Revenue Maximization. Three different types of results regarding the compu-
tational hardness of revenue maximization are known. It is shown in [7] that (under standard
complexity theoretic assumptions) no efficient algorithm can find a deterministic mechanism whose
revenue is within any polynomial factor of the optimal (for deterministic mechanisms), even for
very simple single bidder settings. However, the optimal randomized mechanism in those same
settings can be found in polynomial time [6]. Hardness results for randomized mechanisms are
comparatively scarce.

Very recently, a new type of hardness was shown in [19]. There, they show that it is #P-hard
to find (any description of) an optimal randomized mechanism even in very simple single bidder
settings. Specifically, the problem they study is of a single additive bidder whose value for each of n
items is drawn independently from a distribution of support 2. The natural description complexity
of this problem is O(n) (just list the values for each item and their probabilities), but they show
that the optimal randomized mechanism cannot be found or even executed in time poly(n) (unless
ZPP = #P). This is a completely different type of hardness than what is shown in this paper.
Specifically, we show that certain instances are hard to solve even when the support of the input
distribution is small (whereas it is 2n in the hard examples of [19]), but the instances are necessarily
more involved (we use submodular bidders), as the optimal randomized mechanism can be found
in time polynomial in the support of the input distribution for additive bidders [6].

The existing result that is most similar to ours appears in [22]. There, they show that it is NP-
hard to maximize revenue exactly when there is a single bidder whose value for subsets of n items
is an OXS function.8 Our approaches are even somewhat similar: we both aim to understand the
necessary structure on a type space in order for the optimal revenue to satisfy a simple formula. The
big difference between their result and ours is that their results are inherently limited to settings
with a single bidder who has two possible types. While this suffices to show hardness of exact
maximization, there is no hope of extending this to get hardness of approximation.9 Our stronger
results are enabled by a deeper understanding of the optimal revenue for single bidder settings with
many possible types, which is significantly more involved than the special case of two types.

General Objectives. Following the seminal paper of Nisan and Ronen, much work in algorith-
mic mechanism design has been devoted to maximizing non-linear objectives in a truthful manner.
Recently, more attention has been given to Bayesian settings, as there are numerous strong hard-
ness results in non-Bayesian settings. Still, it is shown in [17] that no polynomial-time black-box
reduction from truthfully maximizing a non-linear objective to non-truthfully maximizing the same
non-linear objective exists without losing a polynomial factor in the approximation ratio, even in
Bayesian settings. Even more recently, a non-black box approach was developed in [14] to mini-
mize makespan in certain Bayesian settings. Our black-box approach sidesteps the hardness result
of [17] by reducing the problem of truthfully maximizing an objective to non-truthfully maximizing
a modified objective.

1.4 Paper Structure

To make our framework easier to understand, we separate the paper as follows. In Sections 2
through 4, we provide the necessary details of our framework to show how it applies to revenue
maximization. Then, in Section 5, we display the full generality of our approach, exemplifying how
it applies to the fractional max-min fairness objective in Section 6. To ease notation we initially

8OXS functions are a subclass of submodular functions
9The seller always has the option of completely ignoring one type and charging the other their maximum value

for their favorite set. This mechanism achieves a 1
2
-approximation in every setting.
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define restricted versions of the MDMDP and SADP problems in Section 2 as they apply to revenue,
using these restricted definitions through Section 4. Then, in Section 5, we expand these definitions
to accommodate general objectives.

2 Preliminaries

Mechanism Design Setting. The mechanism designer has a set of feasible outcomes F to choose
from, which depending on the application could be feasible allocations of items to bidders, locations
to build a public project, etc. Each bidder participating in the mechanism may have several possible
types. A bidder’s type consists of a value for each possible outcome in F . Specifically, a bidder’s
type is a function t mapping F to R+. Ti denotes the set of all possible types of bidder i, which
we assume to be finite. The designer has a prior distribution Di over Ti for bidder i’s type.
Bidders are quasi-linear and risk-neutral. That is, the utility of a bidder of type t for a randomized
outcome (distribution over outcomes) X ∈ ∆(F), when he is charged (a possibly random price with
expectation) p, is Ex←X [t(x)] − p. Therefore, we may extend t to take as input distributions over
outcomes as well, with t(X) = Ex←X [t(x)]. A type profile ~t = (t1, . . . , tm) is a collection of types
for each bidder. We assume that the types of the bidders are independent so that D = ×iDi is the
designer’s prior distribution over the complete type profile.

Mechanisms. A (direct) mechanism consists of two functions, a (possibly randomized) allocation
rule and a (possibly randomized) price rule, and we allow these rules to be correlated. The allocation
rule takes as input a type profile ~t and (possibly randomly) outputs an allocation A(~t) ∈ F . The
price rule takes as input a profile ~t and (possibly randomly) outputs a price vector P (~t). When
the bid profile ~t is reported to the mechanism M = (A,P ), the (possibly random) allocation A(~t)
is selected and bidder i is charged the (possibly random) price Pi(~t). We will sometimes discuss
the interim allocation rule of a mechanism, which is a function that takes as input a bidder i and
a type ti ∈ Ti and outputs the distribution of allocations that bidder i sees when reporting type
ti over the randomness of the mechanism and the other bidders’ types. Specifically, if the interim
allocation rule of M = (A,P ) is X, then Xi(ti) is a distribution satisfying

Pr[x← Xi(ti)] = E~t−i←D−i

[

Pr[A(ti;~t−i) = x | ~t−i]
]

,

where t−i is the vector of types of all bidders but bidder i in ~t, and D−i is the distribution of t−i.
Sometimes we write ~t−i instead of t−i to emphasize that it’s a vector of types.

A mechanism is said to be Bayesian Incentive Compatible (BIC) if it is in every bidder’s best
interest to report truthfully their type, conditioned on the fact that the other bidders report truth-
fully their type. A mechanism is said to be Individually Rational (IR) if it is in every bidder’s best
interest to participate in the mechanism, no matter their type. These definitions are given formally
in Section A.

Goal of the designer. In Section 3 we present our mechanism- to algorithm-design reduction
for the revenue objective. The problem we reduce from is designing a BIC, IR mechanism that
maximizes expected revenue, when encountering a bidder profile sampled from some given distribu-
tion D. Our reduction is described in terms of the problems MDMDP and SADP defined next. In
Section 5 we generalize our reduction to general objectives and accordingly generalize both prob-
lems to accommodate general objectives. But our approach is easier to understand for the revenue
objective, so we give that first.
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Formal Problem Statements. We present black-box reductions between two problems: the
Multi-Dimensional Mechanism Design Problem (MDMDP) and the Solve-Any Differences Prob-
lem (SADP). MDMDP is a well-studied mechanism design problem [10, 11, 12]. SADP is a new
algorithmic problem that we show has strong connections to MDMDP. In order to discuss our re-
ductions appropriately, we will parameterize the problems by two parameters F and V. Parameter
F denotes the feasibility constraints of the setting; e.g., F might be “each item is awarded to at
most one bidder” or “a bridge may be built in location A or B”, etc. Parameter V denotes the
allowable valuation functions, mapping F to the reals; e.g., if F = R

ℓ, then V may be “all additive
functions over F” or “all submodular functions”, etc. Informally, MDMDP asks for a BIC, IR
mechanism that maximizes expected revenue for certain feasibility constraints F and a restricted
class of valuation functions V. SADP asks for an element in F maximizing the difference of two
functions in V, but the algorithm is allowed to choose any two adjacent functions in an ordered list
of size k. Throughout the paper will use V∗ to denote the closure of V under addition and positive
scalar multiplication, and the term “α-approximation” (α ≤ 1) to denote a (possibly randomized)
algorithm whose expected value for the desired objective is an α-fraction of the optimal.

MDMDP(F, V): Input: For each bidder i ∈ [m], a finite set of types Ti ⊆ V and a dis-
tribution Di over Ti. Goal: Find a feasible (outputs an outcome in F with probability 1) BIC,
IR mechanism M , that maximizes expected revenue, when n bidders with types sampled from
D = ×iDi play M truthfully (with respect to all feasible, BIC, IR mechanisms). M is said to
be an α-approximation to MDMDP if its expected revenue is at least a α-fraction of the optimal
obtainable expected revenue.

SADP(F, V): Given as input functions fj ∈ V
∗ (1 ≤ j ≤ k), find a feasible outcome X ∈ F

such that there exists an index j∗ ∈ [k − 1] such that:

fj∗(X)− fj∗+1(X) = max
X′∈F

{fj∗(X
′)− fj∗+1(X

′)}.

X is said to be an α-approximation to SADP if there exists an index j∗ ∈ [k − 1] such that:

fj∗(X)− fj∗+1(X) ≥ α max
X′∈F

{fj∗(X
′)− fj∗+1(X

′)}.

Representation Questions. Notice that both MDMDP and SADP are parameterized by F and
V. As we aim to leave these sets unrestricted, we assume that their elements are represented in
a computationally meaningful way. That is, we assume that elements of F can be indexed using
O(log |F|) bits and are input to functions that evaluate them via this representation. We assume
elements f ∈ V are input either via a turing machine that evaluates f (and the size of this turing
machine counts towards the size of the input), or as a black box. Moreover, all of our reductions
apply whether or not the input functions are given explicitly or as a black box 10. Finally, whenever
we evaluate the running time of an algorithm for either MDMDP or SADP, or of a reduction from
one problem to the other, we count the time spent in an oracle call to functions input to these
problems as one. Similarly, whenever we show a computational hardness result for either MDMDP
or SADP, the time spent in one oracle call is considered as one.

Linear Programming. Our results require the ability to solve linear programs with separation
oracles as well as “weird” separation oracles, a concept recently introduced in [12]. Throughout

10When we claim that we can solve problem P1 given black-box access to a solution to problem P2, we mean that
the functions input to problem P1 may be given either explicitly or as a black box, and that they are input in the
same form to P2.
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the paper we will use the notation αP to denote the polytope P shrunk by a factor of α ≤ 1. That
is, αP = {α~x|~x ∈ P}. We make use of the following Theorem from [12], as well as other theorems
regarding solving linear programs which are included in Section A.1.

Theorem 1. ([12]) Let P be a d-dimensional bounded convex polytope containing the origin, and
let A be an algorithm that takes any direction ~w ∈ [−1, 1]d as input and outputs a point A(~w) ∈ P
such that A(~w) · ~w ≥ α ·max~x∈P {~x · ~w} for some absolute constant α ≤ 1. Then there is a weird
separation oracle WSO for αP such that,

1. Every halfspace output by the WSO will contain αP .

2. Whenever WSO(~x) = “yes,” the execution of WSO explicitly finds directions ~w1, . . . , ~wl such
that ~x ∈ Conv{A(~w1), . . . ,A(~wl)}.

3. Let b be the bit complexity of the input vector ~x, and ℓ be an upper bound of the bit complexity
of A(~w) for all ~w ∈ [−1, 1]d, rtA(y) be the running time of algorithm A on some input with
bit complexity y. Then on input ~x, WSO terminates in time poly (d, b, ℓ, rtA(poly(d, b, ℓ)))
and makes at most poly(d, b, ℓ) many queries to A.

2.1 Implicit Forms

Here, we give the necessary preliminaries to understand a mechanism’s implicit form. The implicit
form is oblivious to what allocation rule the mechanism actually uses; it just stores directly the
necessary information to decide if a mechanism is BIC and IR. For a mechanism M = (A,P ) and
bidder distribution D, the implicit form of M with respect to D consists of two parts. The first
is a function that takes as input a bidder i and a pair of types ti, t

′
i, and outputs the expected

value of a bidder with type ti for reporting t′i instead. Formally, we may store this function as an
mk2-dimensional vector ~π(M) with:

πi(ti, t
′
i) = E~t−i←D−i

[ti(A(t
′
i;~t−i))].

The second is just a function that takes as input a bidder i and a type ti and outputs the
expected price paid by bidder i when reporting type ti. Formally, we may store this function as a
mk-dimensional vector ~P (M) with:

Pi(ti) = E~t−i←D−i
[Pi(ti;~t−i)].

We will denote the implicit form of M as ~πI(M) = (~π(M), ~P (M)), and may drop the parameter
M where appropriate. We call ~π the allocation component of the implicit form and ~P the price
component. Sometimes, we will just refer to ~π as the implicit form if the context is appropriate.

We say that (the allocation component of) an implicit form, ~π, is feasible with respect to F ,D if
there exists a (possibly randomized) mechanism M that chooses an allocation in F with probability
1 such that ~π(M) = ~π. We denote by F (F ,D) the set of all feasible (allocation components of)
implicit forms. We say that an implicit form ~πI is feasible if its allocation component ~π is feasible.
We say that ~πI is BIC if every mechanism with implicit form ~πI is BIC. It is easy to see that ~πI is
BIC if and only if for all i, and ti, t

′
i ∈ Ti, we have:

πi(ti, ti)− Pi(ti) ≥ πi(ti, t
′
i)− Pi(t

′
i).

Similarly, we say that ~πI is IR if every mechanism with implicit form ~πI is IR. It is also easy
to see that ~πI is IR if and only if for all i and ti ∈ Ti we have:

πi(ti, ti)− Pi(ti) ≥ 0.
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3 Revenue Maximization

In this section, we describe and prove correctness of our reduction when the objective is revenue.
Every result in this section is a special case of our general reduction (that applies to any concave
objective) from Section 5, and could be obtained as an immediate corollary. We present revenue
separately as a special case with the hope that this will help the reader understand the general
reduction. Here is an outline of our approach: In Section 3.1, we show that F (F ,D) is a convex
polytope and write a poly-size linear program that finds the revenue-optimal implicit form provided
that we have a separation oracle for F (F ,D). In Section 3.2 we show that any poly-time α-
approximation algorithm for SADP(F ,V) implies a poly-time weird separation oracle for αF (F ,D),
and therefore a poly-time α-approximation algorithm for MDMDP(F , V).

3.1 Linear Programming Formulation

We now show how to write a poly-size linear program to find the implicit form of a mechanism that
solves the MDMDP. The idea is that we will search over all feasible, BIC, IR implicit forms for the
one that maximizes expected revenue. We first show that F (F ,D) is always a convex polytope,
then state the linear program and prove that it solves MDMDP. For ease of exposition, most proofs
can be found in Appendix D.

Lemma 1. F (F ,D) is a convex polytope.

Variables:

• πi(ti, t
′
i), for all bidders i and types ti, t

′
i ∈ Ti, denoting the expected value obtained by bidder

i when their true type is ti but they report t′i instead.

• Pi(ti), for all bidders i and types ti ∈ Ti, denoting the expected price paid by bidder i when
they report type ti.

Constraints:

• πi(ti, ti)− Pi(ti) ≥ πi(ti, t
′
i)− Pi(t

′
i), for all bidders i, and types ti, t

′
i ∈ Ti, guaranteeing that

the implicit form (~π, ~P ) is BIC.

• πi(ti, ti)− Pi(ti) ≥ 0, for all bidders i, and types ti ∈ Ti, guaranteeing that the implicit form
(~π, ~P ) is individually rational.

• ~π ∈ F (F ,D), guaranteeing that the implicit form (~π, ~P ) is feasible.

Maximizing:

•
∑

i

∑

ti
Pr[ti ← Di] · Pi(ti), the expected revenue when played truthfully by bidders sampled

from D.

Figure 1: A linear programming formulation for MDMDP.

Observation 1. Any α-approximate solution to the linear program of Figure 1 corresponds to a
feasible, BIC, IR implicit form whose revenue is at least a α-fraction of the optimal obtainable
expected revenue by a feasible, BIC, IR mechanism.
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Corollary 1. The program in Figure 1 is a linear program with
∑

i∈[m](|Ti|
2+|Ti|) variables. If b is

an upper bound on the bit complexity of Pr[ti] and ti(X) for all i, ti and X ∈ F , then with black-box
access to a weird separation oracle, WSO, for αF (F ,D), the implicit form of an α-approximate
solution to MDMDP can be found in time polynomial in

∑

i∈[m] |Ti|, b, and the runtime of WSO
on inputs with bit complexity polynomial in

∑

i∈[m] |Ti|, b.

3.2 A Reduction from MDMDP to SADP

Based on Corollary 1, the only obstacle to solving the MDMDP is obtaining a separation oracle
for F (F ,D) (or “weird” separation oracle for αF (F ,D)). In this section, we use Theorem 1 to
obtain a weird separation oracle for αF (F ,D) using only black box access to an α-approximation
algorithm for SADP. For ease of exposition, most proofs can be found in Appendix E.

In order to apply Theorem 1, we must first understand what it means to compute ~x · ~w in our
setting. Proposition 1 below accomplishes this. In reading the proposition, recall that ~x is some
implicit form ~π, so the direction ~w has components wi(ti, t

′
i) for all i, ti, t

′
i. Also note that a type ti

is a function that maps allocations to values. So
∑

ti∈Ti
Citi is also a function that maps allocations

to values (and therefore could be interpreted as a type or virtual type). Namely, it maps X to
∑

ti∈Ti
Citi(X)

Proposition 1. Let ~π ∈ F (F ,D) and let ~w be a direction in [−1, 1]
∑

i |Ti|
2
. Then ~π · ~w is exactly

the expected virtual welfare of a mechanism with implicit form ~π when the virtual type of bidder i

with real type t′i is
∑

ti∈Ti

wi(ti,t
′
i)

Pr[t′i]
· ti.

Now that we know how to interpret ~w · ~π, recall that Theorem 1 requires an algorithm A that
takes as input a direction ~w and outputs a ~π with ~w ·~π ≥ α·max~x∈F (F ,D){~w ·~x}. With Proposition 1,
we know that this is exactly asking for a feasible implicit form whose virtual welfare (computed
with respect to ~w) is at least an α-fraction of the virtual welfare obtained by the optimal feasible
implicit form. The optimal feasible implicit form corresponds to a mechanism that, on every profile,
chooses the allocation in F that maximizes virtual welfare. One way to obtain an α-approximate
implicit form is to use a mechanism that, on every profile, chooses an α-approximate outcome in
F . Corollary 2 below states this formally.

Corollary 2. Let M be a mechanism that on profile (t′1, . . . , t
′
m) chooses a (possibly randomized)

allocation X ∈ F such that

∑

i∈[m]

∑

ti∈Ti

wi(ti, t
′
i)

Pr[t′i]
· ti(X) ≥ α · max

X′∈F







∑

i∈[m]

∑

ti∈Ti

wi(ti, t
′
i)

Pr[t′i]
· ti(X

′)







.

Then the implicit form, ~π(M) satisfies:

~π(M) · ~w ≥ α · max
~x∈F (F ,D)

{~x · ~w}.

With Corollary 2, we now want to study the problem of maximizing virtual welfare on a given
profile. This turns out to be exactly an instance of SADP.

Proposition 2. Let ti ∈ V for all i, ti. Let also Ci(ti) be any real numbers, and
∑

ti∈Ti
Ci(ti)ti(·)

be the virtual type of bidder i. Then any X ∈ F that is an α-approximation to SADP(F ,V) on
input (f1 =

∑

i

∑

ti|Ci(ti)>0 Ci(ti)ti(·), f2 =
∑

i

∑

ti|Ci(ti)<0−Ci(ti)ti(·)) is also an α-approximation
for maximizing virtual welfare. That is:
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∑

i

∑

ti

Ci(ti)ti(X) ≥ α · max
X′∈F

{

∑

i

∑

ti

Ci(ti)ti(X
′)

}

Combining Corollary 2 and Proposition 2 yields Corollary 3 below.

Corollary 3. Let G be any α-approximation algorithm for SADP(F ,V). Let also M be the mech-
anism that, on profile (t′1, . . . , t

′
m) chooses the allocation

G











∑

i

∑

ti|wi(ti,t′i)>0

(wi(ti, t
′
i)/Pr[t

′
i])ti(·) ,

∑

i

∑

ti|wi(ti,t′i)<0

−(wi(ti, t
′
i)/Pr[t

′
i])ti(·)









 .

Then the interim form ~π(M) satisfies:

~π(M) · ~w ≥ α · max
~x∈F (F ,D)

{~x · ~w}.

At this point, we would like to just let A be the algorithm that takes as input a direction ~w
and computes the implicit form prescribed by Corollary 3. Corollary 3 shows that this algorithm
satisfies the hypotheses of Theorem 1, so we would get a weird separation oracle for αF (F ,D).
Unfortunately, this requires some care, as computing the implicit form of a mechanism exactly
would require enumerating every profile in the support of D, and also enumerating the randomness
used on each profile. Luckily, however, both of these issues arose in previous work and were
solved [11, 12]. We overview the necessary approach in Section E, and refer the reader to [11, 12]
for complete details.

After these modifications, the only remaining step is to turn the implicit form output by the
LP of Figure 1 into an actual mechanism. This process is simple and made possible by guarantee
2) of Theorem 1. We overview the process in Section E, as well as give a formal description of our
algorithm to solve MDMDP as Algorithm 3. We conclude this section with a theorem describing
the performance of this algorithm. In the following theorem, G denotes a (possibly randomized)
α-approximation algorithm for SADP(F ,V).

Theorem 2. Let b be an upper bound on the bit complexity of ti(X) and Pr[ti] for any i ∈ [m],
ti ∈ Ti, and X ∈ F . Then Algorithm 3 makes poly(

∑

i |Ti|, 1/ǫ, b) calls to G, and terminates in
time poly(

∑

i |Ti|, 1/ǫ, b, rtG(poly(
∑

i |Ti|, 1/ǫ, b))), where rtG(x) is the running time of G on input
with bit complexity x. If the types are normalized so that ti(X) ∈ [0, 1] for all i, ti ∈ Ti, and
X ∈ F , and OPT is the optimal obtainable expected revenue for the given MDMDP instance, then
the mechanism output by Algorithm 3 obtains expected revenue at least αOPT − ǫ, and is ǫ-BIC
with probability at least 1− exp(poly(

∑

i |Ti|, 1/ǫ, b)).

4 Reduction from SADP to MDMDP

In this section we overview our reduction from SADP to MDMDP that holds for a certain subclass
of SADP instances (a much longer exposition of the complete approach can be found in Section B).
The subclass is general enough for us to conclude that revenue maximization, even for a single
submodular bidder, is impossible to approximate within any polynomial factor unless NP = RP .
For this section, we will restrict ourselves to single-bidder settings, as our reduction will always
output a single-bidder instance of MDMDP.
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Here is an outline of our approach: In Section B.1, we start by defining two properties of
allocation rules. The first of these properties is the well-known cyclic monotonicity. The second
is a new property we define called compatibility. Compatibility is a slightly (and strictly) stronger
condition than cyclic monotonicity. The main result of this section is a simple formula (of the
form of the objective function that appears in SADP) that upper bounds the maximum obtainable
revenue using a given allocation rule, as well as a proof that this bound is attainable when the
allocation rule is compatible. Both definitions and results can be found in Section B.1.

Next, we relate SADP to MDMDP using the results of Section B.1, showing how to view any
(possibly suboptimal) solution to a SADP instance as one for a corresponding MDMDP instance
and vice versa. We show that for compatible SADP instances, any optimal solution is also optimal
in the corresponding MDMDP instance. Furthermore, we show (using the work of Section B.1) that,
for any α-approximate MDMDP solution X, the corresponding SADP solution Y is necessarily an
approximate solution to SADP as well, and a lower bound on its approximation ratio as a function
of α. Therefore, this constitutes a black-box reduction from approximating compatible instances
of SADP to approximating MDMDP. This is presented in Section B.2.

Finally, in Section B.3, we give a class of compatible SADP instances, where V is the class
of submodular functions and F is trivial, for which SADP is impossible to approximate within
any polynomial factor unless NP = RP . Using the reduction of Section B.2 we may immediately
conclude that unless NP = RP , revenue maximization for a single monotone submodular bidder
under trivial feasibility constraints (the seller has one copy of each of n goods and can award any
subset to the bidder) is impossible to approximate within any polynomial factor. Note that, on the
other hand, welfare is trivial to maximize in this setting: simply give the bidder every item. This
section is concluded with the proof of the following theorem. Formal definitions of submodularity,
value oracle, demand oracle, and explicit access can be found at the start of Section B.3

Theorem 3. The problems SADP(2[n],monotone submodular functions) (for k = poly(n)) and
MDMDP(2[n],monotone submodular functions) (for k = |T1| = poly(n)) are:

1. Impossible to approximate within any 1/poly(n)-factor with only poly(k, n) value oracle queries.

2. Impossible to approximate within any 1/poly(n)-factor with only poly(k, n) demand oracle
queries.

3. Impossible to approximate within any 1/poly(n)-factor given explicit access to the input func-
tions in time poly(k, n), unless NP = RP .

5 General Objectives

In this section, we display the full generality of our new approach. In Section 5.1 we update
the necessary preliminaries completely. After, we give a very brief overview of how to extend
the approach of Section 3 to the general setting. Because the new approach is very similar but
technically more involved, we postpone a complete discussion to Appendix C. We include the
complete preliminaries to clarify exactly what problem we are solving.

5.1 Updated Preliminaries

Here, we update our preliminaries to accommodate the general setting. To ease the transition from
the settings described in Section 2, we list all categories discussed but note only the changes.

Mechanism Design Setting. No modifications.
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Mechanisms. No modifications.

Goal of the designer. The designer’s goal is to design a feasible, BIC, IR mechanism that
maximizes the expected value of some objective function, O, when encountering a bidder profile
sampled from D (and the bidders report truthfully). O takes as input a type profile ~t, a randomized
outcome X ∈ ∆(F), and a randomized payment profile P , and it outputs a quality O(~t,X, P ). We
assume that O is non-negative and concave with respect to X and P . That is, O(~t, cX1 + (1 −
c)X2, cP1 + (1 − c)P2) ≥ cO(~t,X1, P1) + (1 − c)O(~t,X2, P2). As the runtime of our algorithms
necessarily depends on the bit complexity of the input, the complexity of O must somehow enter
the picture as well. One natural notion of complexity is as follows: we know that every concave
function can be written as the minimum of a (possibly infinite) set of linear functions. So we
shall define the bit complexity of a linear function to be the maximum bit complexity among all its
coefficients, and define the bit complexity of a concave function to be the sum of the bit complexities
of each of these linear functions.11

To help put this in context, here are some examples: the social welfare objective can be described
as O(~t,X, P ) =

∑

i ti(X). The revenue objective can be described as O(~t,X, P ) =
∑

i E[Pi]. The
fractional max-min objective can be described as O(~t,X, P ) = mini{ti(X)}. All three examples are
concave. We say that O is allocation-only if O does not depend on P , and that O is price-only if O
does not depend on ~t or X. For instance, social welfare and fractional max-min are both allocation-
only objectives, and revenue is a price-only objective. With the exception of revenue, virtually every
objective function studied in the literature (in both mechanism and algorithm design) is allocation-
only.12 For allocation-only or price-only objectives, the necessary problem statements and results
have a cleaner form, which we state explicitly.

Formal Problem Statements. In the problem statements below, MDMDP and SADP have
been updated to contain an extra parameter O, which denotes the objective function. For SADP,
we also specify simplifications for allocation-only and price-only objectives.

MDMDP(F,V,O): Input: For each bidder i ∈ [m], a finite set of types Ti ⊆ V and a
distribution Di over Ti. Goal: Find a feasible (outputs an outcome in F with probability 1) BIC,
IR mechanism M , that maximizes O in expectation, when m bidders with types sampled from
D = ×iDi play M truthfully (with respect to all feasible, BIC, IR mechanisms). M is said to be
an α-approximation to MDMDP if the expected value of O is at least an α-fraction of the optimal
obtainable expected value of O.

SADP(F, V, O): Given as input functionsfj ∈ V
∗ (1 ≤ j ≤ k), gi ∈ V (1 ≤ i ≤ m), multipliers

ci ∈ R (1 ≤ i ≤ m), and a special multiplier c0 ≥ 0, find a feasible (possibly randomized) outcome
X ∈ ∆(F) and (possibly randomized) pricing scheme P such that there exists an index j∗ ∈ [k− 1]

11This is the natural complexity of an explicit description of a concave function that lists each such linear function.
All objectives considered in this paper have finite bit complexity under this definition, but note that this value could
well be infinite for arbitrary concave functions. Such objectives can be accommodated using techniques from convex
optimization, but doing so carefully would cause the exposition to become overly cumbersome.

12 A recent example of an objective function that considers both the allocation and pricing scheme can be found
in [5].
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with:

(c0 · O((g1, . . . , gm),X, P )) +

(

∑

i

ciE[Pi]

)

+ (fj∗(X)− fj∗+1(X))

= max
X′∈F ,P

{

(

c0 · O((g1, . . . , gm),X ′, P )
)

+

(

∑

i

ciE[Pi]

)

+
(

fj∗(X
′)− fj∗+1(X

′)
)

}

.

X is said to be an α-approximation to SADP if there exists an index j∗ ∈ [k − 1] such that:

(c0 · O((g1, . . . , gm),X, P )) +

(

∑

i

ciE[Pi]

)

+ (fj∗(X)− fj∗+1(X))

≥α

(

max
X′∈F ,P

{

(

c0 · O((g1, . . . , gm),X ′, P )
)

+

(

∑

i

ciE[Pi]

)

+
(

fj∗(X
′)− fj∗+1(X

′)
)

})

.

One should interpret this objective function as maximizing O plus virtual revenue plus virtual
welfare. For allocation-only objectives, we may remove the price entirely (from the input as well as
objective). That is, the input is just fj ∈ V

∗ (1 ≤ j ≤ k) and gi ∈ V (1 ≤ i ≤ m) and the objective
is c0O((g1, . . . , gm),X) + (fj∗(X) − fj∗+1(X)). This should be interpreted as maximizing O plus
virtual welfare.

For price-only objectives, we may remove the gi’s entirely (from the input as well as objective).
That is, the input is just fj ∈ V

∗ (1 ≤ j ≤ k) and multipliers ci ∈ R (1 ≤ i ≤ m) and the
objective is c0O(P ) + (

∑

i ciE[Pi]) + (fj∗(X)− fj∗+1(X)). It is easy to see that this separates into
two completely independent problems, as the allocation X and pricing scheme P don’t interact.
The first problem is just finding a pricing scheme that maximizes O(P )+

∑

i ciE[Pi], which should
be interpreted as maximizing O plus virtual revenue. The second is solving the simple version of
SADP given in Section 2, which should be interpreted as maximizing virtual welfare. When the
objective is revenue, maximizing O(P ) +

∑

i ciE[Pi] is trivial, simply charge the maximum allowed
price to each bidder with ci > −1 and 0 to everyone else. This is why solving the general version
of SADP for revenue reduces to the simpler version given in Section 2.

5.2 Implicit Forms

We update the implicit form only by adding one extra component, which stores the expected value
of O when bidders sampled from D play M truthfully. That is, we define:

πO(M) = E~t←D[O(
~t,A(~t), P (~t))].

We still denote the implicit form of M as ~πI(M) = (πO(M), ~π(M), ~P (M)). We call πO(M) the
objective component of ~πI . Again, we will sometimes just refer to (πO(M), ~π(M)) as the implicit
form if the context is appropriate.

We modify slightly our definition of feasibility for implicit forms (but this is important). We say
that an implicit form ~πI = (πO, ~π, ~P ) is feasible with respect to F ,D,O if there exists a (possibly
randomized) mechanism M that chooses an allocation in F with probability 1 such that ~π(M) = ~π,
~P (M) = ~P , and πO(M) ≥ πO ≥ 0.13 We denote by F (F ,D,O)14 the set of all feasible implicit

13For the feasible region to be convex, it is important to include all O that is smaller than πO(M). Also, as
eventually we need to maximize O, including these points will not affect the final solution. We bound it below by 0
in order to maintain a bounded feasible region.

14Assuming that all types have been normalized so that ti(X) ∈ [0, 1] for all i, ti ∈ Ti, X ∈ F , we also may w.l.o.g.

14



forms. For allocation-only objectives, we may ignore the price component, and discuss feasibility
only of (πO, ~π) (still calling an implicit form ~πI feasible if its objective and allocation component are
feasible). For allocation-only objectives, we therefore denote by F (F ,D,O) the set of all feasible
(objective and allocation components of) implicit forms. For price-only objectives, we can separate
the question of feasibility into two parts: one for ~π, and the other for (πO, ~P ). The implicit form
~πI is feasible if and only if ~π is feasible and (πO, ~P ) is feasible (this is not a definition, but an
observation). Therefore, for price-only objectives, we denote by F (F ,D,O) the set of all feasible
(objective and price components of) implicit forms, and by F (F ,D) the set of all feasible allocation
components of implicit forms.

5.3 Overview of Approach

Here we give a very brief overview of how to modify the approach of Section 3 to accommodate
the general setting just described in Section 5.1. In Section C.1, we modify the linear program
of Section 3.2 to search over all feasible, BIC, IR implicit forms in the general setting for the one
that maximizes O in expectation. This linear program is still of polynomial size, but requires a
separation oracle for F (F ,D,O) (or a weird separation oracle for αF (F ,D,O)).

In Section C.2, we use Theorem 1 to obtain a weird separation oracle for αF (F ,D,O). We show
that ~x · ~w corresponds to the expected value of a virtual objective for a mechanism M with interm
form ~x. For general objectives that consider both price and allocation rules, this virtual objective
can be interpreted as maximizing the actual objective plus virtual welfare plus virtual revenue. For
allocation-only objectives, it can be interpreted as maximizing the actual objective plus virtual wel-
fare. For price-only objectives, it can be interpreted as separately maximizing the actual objective
plus virtual revenue, and separately maximizing virtual welfare. The section concludes with a proof
of the following theorem. The referenced Algorithm 2 can be found in Section C.2. In the following
theorem, G denotes a (possibly randomized) α-approximation algorithm for SADP(F ,V,O).

Theorem 4. Let b be an upper bound on the bit complexity of O, Pr[ti], and ti(X) for all
i, ti ∈ Ti,X∈ F . Then Algorithm 2 makes poly(

∑

i |Ti|, 1/ǫ, b) calls to G, and terminates in time
poly(

∑

i |Ti|, 1/ǫ, b, rtG(poly(
∑

i |Ti|, 1/ǫ, b))), where rtG(x) is the running time of G on an input
with bit complexity x. If the range of each ti is normalized to lie in [0, 1] for all i, ti ∈ Ti, and
OPT is the optimal obtainable expected value of O for the given MDMDP instance, then the mech-
anism output by Algorithm 3 yields E[O] ≥ αOPT − ǫ, and is ǫ-BIC with probability at least
1− exp(poly(

∑

i |Ti|, 1/ǫ, b)).

6 Fractional Max-Min Fairness

In this section, we apply our results to a concrete objective function: fractional max-min fairness
O(~t,X) = mini{ti(X)}. For the remainder of this section we will denote this objective by FMMF.
We will also restrict ourselves to feasibility constraints and bidder types considered in [11]. Specif-
ically, there are going to be n items and F will be some subset of 2[m]×[n], where the element (i, j)
denotes that bidder i receives item j. Bidders will be additive, meaning that we can think of ti as an
n-dimensional vector ~ti such that, if xij denotes the probability that bidder i receives item j in allo-
cation X, then ti(X) =

∑

j tij ·xij . For the rest of this section, we will use ~x to represent the vector
of marginal probabilities xij induced by allocation X, and F (F) to represent the set of marginal
probability vectors induced by some feasible allocation. Morever, we can take V = [0, 1]n×m to

add the vacuous constraint that 0 ≤ Pi(ti) ≤ 1 for all i, ti in order to keep the feasible region bounded. These
constraints are vacuous because they will be enforced in the end anyway by individual rationality.
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represent the set of all additive functions over F and think of bidder i’s type as an element of V
which is 0 on all (i′, j′) except for those satisfying i′ = i. For the rest of this section, if f ∈ V, we
write fij as a shorthand for the (i, j) coordinate of f . Our main result will be a black-box reduction
from SADP(F ,V, FMMF ) to a very well-studied problem that we call Max-Weight(F)15 . Using
this reduction we will obtain optimal and approximately optimal mechanisms for a wide range of
F ’s.

Max-Weight(F): Input: wij ∈ R for all i ∈ [m], j ∈ [n]. Goal: Find S ∈ F that
maximizes

∑

(i,j)∈S wij. S is said to be an α-approximation to Max-Weight if
∑

(i,j)∈S wij ≥
αmaxS′∈F{

∑

(i,j)∈S′ wij}.

Some popular examples of Max-Weight(F) include finding the max-weight matching, the max-
weight independent set in a matroid, the max-weight feasible set in a matroid intersection, etc.
Our high-level goal is to obtain a poly-time reduction from SADP(F , additive functions, FMMF )
to Max-Weight(F), and then obtain mechanisms for FMMF.

We first need to show that FMMF is concave. The proof of the next observation, as well as
all other proofs of this section, are given in Section F.

Observation 2. FMMF is concave.

We now begin the description of our algorithm for SADP. We first observe that any additive
function f over F can be described as an nm-dimensional vector, so that f(X) =

∑

i,j fij · xij .
It is then easy to see that f(X) − f ′(X) =

∑

i,j(fij − f ′ij) · xij . So let’s define O′(~g,X, f, f ′) =

c0 · FMMF (~g,X) + f(X) − f ′(X), where ~g = (g(1), . . . , g(m)) ∈ Vm, and f, f ′ ∈ V are arbritrary
additive functions over F . Notice that, if we can optimize O′ then we can also optimize SADP.
(Indeed, we can optimize SADP in a strong sense in that we can solve for all j∗, not just one.) To
do so, we make use of the linear programming formulation of Figure 2, which aims at maximizing
O′(~g,X, f, f ′) over all ~x ∈ F (F). (It is clear that ∆(F) is a convex polytope, as a convex hull of
elements in F . As F (F) is simply a linear transformation of ∆(F), it is also a convex polytope.)

Variables:

• xij , for 1 ≤ i ≤ m, 1 ≤ j ≤ n, denoting the probability that X awards item j to bidder i.

• O, denoting a lower bound on FMMF (~g,X).

Constraints:

• ~x ∈ F (F), guaranteeing that ~x corresponds to a valid solution.

• O ≤
∑

ℓ,j g
(i)
ℓj xℓj , for all i ∈ [m], guaranteeing that O ≤ FMMF (~g,X).

Maximizing:

• c0O +
∑

i,j(fij − f ′ij)xij , a lower bound on O′(~g,X, f, f ′).

Figure 2: A linear programming formulation for maximizing O′(~g,X, f, f ′).

Observation 3. An α-approximate solution to the LP of figure 2 corresponds to an α-approximate
solution to maximizing O′(~g,X, f, f ′) over ∆(F).

Corollary 4. The program in Figure 2 is a linear program with mn+1 variables. If b is an upper
bound on the bit complexity of gij , fij, and f ′ij for all i, j, then with black-box access to a weird

15Notice that FMMF is in fact well defined for all vectors ~f of functions f (i) ∈ V. We will define FMMF of an
allocation X as mini{f

(i)(X) =
∑

ℓ,j
f
(i)
ℓ,j · xℓj}.
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separation oracle, WSO, for αF (F), an α-approximate solution to maximizing O′(~g,X, f, f ′) over
F (F) can be found in time polynomial in n, m, b and the runtime of WSO on inputs with bit
complexity polynomial in n, m, and b.

With Corollary 4, our task is to now come up with a weird separation oracle for αF (F), which we
show can be obtained using black-box access to an α-approximation algorithm for Max-Weight(F).
Again, we would like to apply Theorem 1, so we just need an algorithm that can take as input a
direction ~w ∈ [−1, 1]nm and output an ~x with ~w · ~x ≥ αmax~x′∈F (F){~w · ~x

′}. Fortunately, this is
much easier than the previous sections. Below, we recall that each direction ~x has a component in
[0, 1] for all i, j, which we interpret as the marginal probability that the element (i, j) is chosen by
a corresponding distribution X.

Observation 4. ~w · ~x is exactly the expected weight of a set sampled from X, where the weight of
a set S is

∑

(i,j)∈S wij.

Corollary 5. Let G′ be any deterministic α-approximation algorithm for Max-Weight(F) and
define G′(~w)ij to be 1 if (i, j) ∈ G′(~w) and 0 otherwise. Then G′(~w) · ~w ≥ αmax~x∈F (F){~x · ~w}.

If we want to let our reduction accommodate randomized algorithms for Max-Weight(F), we
need to use the reduction of [12] from randomized to deterministic mechanisms. Recall that the
modification is basically this: if G is a randomized α-approximation algorithm, then running G
independently enough times and taking the best solution will give an (α − γ)-approximation with
very high probability for any desired γ > 0. If we call this algorithm G′, then we may treat G′ as
a deterministic algorithm for all intents and purposes by fixing the randomness used by G′ ahead
of time, and taking a union bound to guarantee that with very high probability, G′ obtains an
(α− γ)-approximation on all instances that ever arise during the problem.

Algorithm 1 Algorithm to solve SADP(F ,additive functions,FMMF ):

1: Input: additive functions {gi}i∈[m], {fj}j∈[k], and black-box access to G, a (possibly random-
ized) α-approximation algorithm for Max-Weight(F).

2: Ignore f3, . . . , fk. Only f1 and f2 will be used.
3: Sample G to obtain G′ as prescribed in Appendix G.2 of [12] (and intuitively explained above).

G′ can be henceforth treated as a deterministic (α − γ)-approximation algorithm, for any
desired γ.

4: Define A to, on input ~w ∈ [−1, 1]nm, output the set G′(~w) as a vector in {0, 1}nm.
5: Solve the linear program in Figure 2 to maximize O′(~g,X, f1, f2) using the weird separation

oracle obtained from A using Theorem 1. Call the output ~x, and let ~w1, . . . , ~wl be the directions
guaranteed by Theorem 1 to be output by the weird separation oracle.

6: Solve the linear system ~x =
∑

j∈[l] cjA(~wj) to write ~x as a convex combination of A(~wj).
7: Output the following distribution: First, randomly select a ~w ∈ [−1, 1]nm by choosing ~wj with

probability cj . Then, choose the set G′(~w).

Theorem 5. Let b be an upper bound on the bit complexity of the values in the range of the
functions input to Algorithm 1. Then Algorithm 1 makes poly(n,m, b) calls to G and terminates in
time poly(n,m, b). The distribution output is an α-approximation to the input SADP instance.

Corollary 6. Given black-box access to G, an α-approximation algorithm for Max-Weight(F), an
ǫ-BIC solution MDMDP(F ,additive functions,FMMF ) can be found with expected fractional max-
min fairness at least αOPT − ǫ. If b is an upper bound on the bit complexity of tij and Pr[ti] for
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all i, j, ti, then the algorithm runs in time poly(b, n,
∑

i |Ti|) and makes poly(b, n,
∑

i |Ti|) calls to G
on inputs of size poly(b, n,

∑

i |Ti|).

Remark 1. Notice that if F is a matroid or an intersection of two matroids, then we can solve
Max-Weight(F) exactly. As a consequence of Corollary 6 we obtain optimal mechanisms for the
Fractional Max-Min fairness objective for such F ’s.

A Omitted Formal Details from Section 2

Definition 1. (BIC) A mechanism M = (A,P ) is said to be BIC if for all bidders i and all types
ti, t
′
i ∈ Ti we have:

Et−i←D−i
[ti(A(ti; t−i))− Pi(ti; t−i)] ≥ Et−i←D−i

[

ti(A(t
′
i; t−i))− Pi(t

′
i; t−i)

]

.

Definition 2. (IR) A mechanism M = (A,P ) is said to be (interim) IR16 if for all bidders i and
all types ti ∈ Ti we have:

Et−i←D−i
[ti(A(ti; t−i))− Pi(ti; t−i)] ≥ 0.

A.1 Linear Programming

Here, we review the necessary preliminaries on linear programming. Theorem 1 comes from recent
work [12]. Theorem 6 states well-known properties of the ellipsoid algorithm. Corollary 7 is an
obvious corollary of part 1 of Theorem 1. In addition, a complete discussion of this can be found
in [12].

Corollary 7. ([12]) Let Q be an arbitrary intersection of halfspaces. Let SO be a separation oracle
for αP , where P is a bounded convex polytope containing the origin and α ≤ 1 some constant.
Let c1 be the solution output by the Ellipsoid algorithm that maximizes some linear objective ~c · ~x
subject to ~x ∈ Q and SO(~x) = “yes′′. Let also c2 be the solution output by the exact same algorithm,
but replacing SO with WSO, a “weird” separation oracle for αP as in Theorem 1—i.e. run the
Ellipsoid algorithm with the exact same parameters as if WSO was a valid separation oracle for
αP . Then c2 ≥ c1.

Theorem 6. [Ellipsoid Algorithm for Linear Programming] Let P be a bounded convex polytope in
R
d specified via a separation oracle SO, and let ~c ·~x be a linear function. Suppose that ℓ is an upper

bound on the bit complexity of the coordinates of ~c as well as the extreme points of P ,17 and also that
we are given a ball B(x0, R) containing P such that x0 and R have bit complexity poly(d, ℓ). Then
we can run the ellipsoid algorithm to optimize ~c · ~x over P , maintaining the following properties:

1. The algorithm will only query SO on rational points with bit complexity poly(d, ℓ).

2. The ellipsoid algorithm will solve the Linear Program in time polynomial in d, ℓ and the
runtime of SO when the input query is a rational point of bit complexity poly(d, ℓ).

3. The output optimal solution is a corner of P .

16We note briefly here that for all objectives considered in this paper, any BIC, interim IR mechanism can be made
to be BIC and ex-post IR without any loss via a simple reduction given in [20].

17If a d-dimensional convex region with extreme points of bit complexity ℓ is non-empty, then it certainly has
volume at least 2−poly(d,ℓ).
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B Reduction from SADP to MDMDP (complete)

B.1 Cyclic Monotonicity and Compatibility

We start with two definitions that discuss matching types to allocations. By this, we mean to form
a bipartite graph with types on the left and (possibly randomized) allocations on the right. The
weight of an edge between a type t and (possibly randomized) allocation X is exactly t(X). So the
weight of a matching in this graph is just the total welfare obtained by awarding each allocation to
its matched type. So when we discuss the welfare-maximizing matching of types to allocations, we
mean the max-weight matching in this bipartite graph. Below, cyclic monotonicity is a well-known
definition in mechanism design with properties connected to truthfulness. Compatibility is a new
property that is slightly stronger than cyclic monotonicity.

Definition 3. (Cyclic Monotonicity) A list of (possibly randomized) allocations (X1, . . . ,Xk) is
said to be cyclic monotone with respect to (t1, . . . , tk) if the welfare-maximizing matching of types
to allocations is to match allocation Xi to type ti for all i.

Definition 4. (Compatibility) We say that a list of types (t1, . . . , tk) and a list of (possibly ran-
domized) allocations (X1, . . . ,Xk) are compatible if (X1, . . . ,Xk) is cyclic monotone with respect
to (t1, . . . , tk), and for any i < j, the welfare-maximizing matching of types ti+1, . . . , tj to (possibly
randomized) allocations Xi, . . . ,Xj−1 is to match allocation Xℓ to type tℓ+1 for all ℓ.

Compatibility is a slightly stronger condition than cyclic monotonicity. In addition to the stated
definition, it is easy to see that cyclic monotonicity also guarantees that for all i < j, the welfare-
maximizing matching of types ti+1, . . . , tj to allocations Xi+1, . . . ,Xj is to match allocation Xℓ

to type tℓ for all ℓ. Compatibility requires that the “same” property still holds if we shift the
allocations down by one.

Now, we want to understand how the type space and allocations relate to expected revenue.
Below, ~t denotes an ordered list of k types, ~q denotes an ordered list of k probabilities and ~X denotes
an ordered list of k (possibly randomized) allocations. We denote by Rev(~t, ~q, ~X) the maximum
obtainable expected revenue in a BIC, IR mechanism that awards allocation Xj to type tj , and the
bidder’s type is tj with probability qj. Proposition 3 provides an upper bound on Rev that holds
in every instance. Proposition 4 provides sufficient conditions for this bound to be tight.

Proposition 3. For all ~t, ~q, ~X, we have:

Rev(~t, ~q, ~X) ≤

k
∑

ℓ=1

∑

j≥ℓ

qjtℓ(Xℓ)−

k−1
∑

ℓ=1

∑

j≥ℓ+1

qjtℓ+1(Xℓ) (1)

Proof of Proposition 3: Let pj denote the price charged in some BIC, IR mechanism that awards
allocation Xj to type tj . Then IR guarantees that:

p1 ≤ t1(X1)

Furthermore, BIC guarantees that, for all j ≤ k:

tj(Xj)− pj ≥ tj(Xj−1)− pj−1

⇒ pj ≤ tj(Xj)− tj(Xj−1) + pj−1

Chaining these inequalities together, we see that, for all j ≤ k:
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pj ≤ t1(X1) +

j
∑

ℓ=2

(tℓ(Xℓ)− tℓ(Xℓ−1))

As the expected revenue is exactly
∑

j pjqj, we can rearrange the above inequalities to yield:

∑

j

pjqj ≤ t1(X1)
∑

j

qj +
k
∑

ℓ=2

∑

j≥ℓ

qj (tℓ(Xℓ)− tℓ(Xℓ−1))

≤ t1(X1) +

k
∑

ℓ=2

∑

j≥ℓ

qjtℓ(Xℓ)−

k
∑

ℓ=2

∑

j≥ℓ

qjtℓ(Xℓ−1)

≤

k
∑

ℓ=1

∑

j≥ℓ

qjtℓ(Xℓ)−

k−1
∑

ℓ=1

∑

j≥ℓ+1

qjtℓ+1(Xℓ)

✷

Proposition 4. If ~t and ~X are compatible, then for all ~q, Equation (1) is tight. That is,

Rev(~t, ~w, ~X) =

k
∑

ℓ=1

∑

j≥ℓ

qjtℓ(Xℓ)−

k−1
∑

ℓ=1

∑

j≥ℓ+1

qjtℓ+1(Xℓ)

Proof of Proposition 4: Proposition 3 guarantees that the maximum obtainable expected payment
does not exceed the right-hand bound, so we just need to give payments that yield a BIC, IR
mechanism whose expected payment is as desired. So consider the same payments used in the
proof of Proposition 3:

p1 = t1(X1)

pj = tj(Xj)− tj(Xj−1) + pj−1, j ≥ 2

= t1(X1) +

j
∑

ℓ=2

(tℓ(Xℓ)− tℓ(Xℓ−1))

The exact same calculations as in the proof of Proposition 3 shows that the expected revenue of
a mechanism with these prices is exactly the right-hand bound. So we just need to show that these
prices yield a BIC, IR mechanism. For simplicity in notation, let p0 = 0, t0 = 0 (the 0 function),
and X0 be the null allocation (for which we have tj(X0) = 0 ∀j). To show that these prices yield
a BIC, IR mechanism, we need to show that for all j 6= ℓ:

tj(Xj)− pj ≥ tj(Xℓ)− pℓ

⇔ tj(Xj)− tj(Xℓ) + pℓ − pj ≥ 0
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First, consider the case that j > ℓ. Then:

tj(Xj)− tj(Xℓ) + pℓ − pj = tj(Xj)− tj(Xℓ)−

j
∑

z=ℓ+1

(tz(Xz)− tz(Xz−1))

= tj(Xj) +

j
∑

z=ℓ+1

tz(Xz−1)− tj(Xℓ)−

j
∑

z=ℓ+1

tz(Xz)

=

j
∑

z=ℓ+1

tz(Xz−1)− tj(Xℓ)−

j−1
∑

z=ℓ+1

tz(Xz)

Notice now that
∑j

z=ℓ+1 tz(Xz−1) is exactly the welfare of the matching that gives Xz−1 to

tz for all z ∈ {ℓ + 1, . . . , j}. Similarly, tj(Xℓ) +
∑j−1

z=ℓ+1 tz(Xz−1) is exactly the welfare of the
matching that gives Xz to tz for all z ∈ {ℓ + 1, . . . , j − 1} and gives Xℓ to tj. In other words,
both sums represent the welfare of a matching between allocations in {Xℓ, . . . ,Xj−1} and types in
{tℓ+1, . . . , tj}. Furthermore, compatibility guarantees that the first sum is larger. Therefore, this
term is positive, and tj cannot gain by misreporting any tℓ for ℓ < j (including ℓ = 0).

The case of j < ℓ is nearly identical, but included below for completeness:

tj(Xj)− tj(Xℓ) + pℓ − pj = tj(Xj)− tj(Xℓ) +

ℓ
∑

z=j+1

(tz(Xz)− tz(Xz−1))

= tj(Xj) +

ℓ
∑

z=j+1

tz(Xz)− tj(Xℓ)−

ℓ
∑

z=j+1

tz(Xz−1)

=

ℓ
∑

z=j

tz(Xz)− tj(Xℓ)−

ℓ
∑

z=j+1

tz(Xz−1)

Again, notice that
∑ℓ

z=j tz(Xz) is exactly the welfare of the matching that gives Xz to tz for all

z ∈ {j, . . . , ℓ}. Similarly, tj(Xℓ)+
∑ℓ

z=j+1 tz(Xz−1) is exactly the welfare of the matching that gives
Xz−1 to tz for all z ∈ {j + 1, . . . , ℓ}, and gives Xℓ to tj . In other words, both sums represent the
welfare of a matching between allocations in {Xj , . . . ,Xℓ} and types in {tj , . . . , tℓ}. Furthermore,
cyclic monotonicity guarantees that the first sum is larger. Therefore, this term is positive, and tj
cannot gain by misreporting any tℓ for ℓ > j. Putting both cases together proves that these prices
yield a BIC, IR mechanism, and therefore the bound in Equation (1) is attained.

✷

B.2 Relating SADP to MDMDP

Proposition 4 tells us how, when given an allocation rule that is compatible with the type space,
to find prices that achieve the maximum revenue. However, if our goal is to maximize revenue
over all feasible allocation rules, it does not tell us what the optimal allocation rule is. Now, let
us take a closer look at the bound in Equation (1). Each allocation Xℓ is only ever evaluated by
two types: tℓ and tℓ+1. So to maximize revenue, a tempting approach is to choose X∗ℓ to be the
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allocation that maximizes (
∑

j≥ℓ qj)tℓ(Xℓ)− (
∑

j≥ℓ+1 qj)tℓ+1(Xℓ), and hope that that ~X∗ and ~t are
compatible. Because we chose the X∗ℓ to maximize the upper bound of Equation (1), the optimal
obtainable revenue for any allocation rule can not possibly exceed the upper bound of Equation (1)
when evaluated at the X∗ℓ (by Proposition 3), and if ~X∗ is compatible with ~t, then Proposition 4
tells us that this revenue is in fact attainable. Keeping these results in mind, we now begin drawing
connections to SADP. For simplicity of notation in the definitions below, we let fk+1(·) be the 0
function.

Definition 5. (C-compatible) We say that (f1, . . . , fk) are C-compatible iff there exist multipliers
1 = Q1 < Q2 < . . . < Qk, of bit complexity at most C, and allocations (X∗1 , . . . ,X

∗
k) such that X∗ℓ

maximizes fℓ(·)− fℓ+1(·) for all ℓ and (X∗1 , . . . ,X
∗
k) is compatible with with (Q1f1, . . . , Qkfk).

Observation 5. Let 1 = Q1 < Q2 < . . . < Qk. Then

Rev((Q1f1, . . . , Qkfk), (1/Q1 − 1/Q2, 1/Q2 − 1/Q3, . . . , 1/Qk), ~X) ≤

k
∑

ℓ=1

fℓ(Xℓ)− fℓ+1(Xℓ)

This bound is tight when ~X is compatible with (Q1f1, . . . , Qkfk).

Proof. Plug in to Propositions 3 and 4.

Definition 6. (D-balanced) For a list of functions (f1, . . . , fk), let X
∗
ℓ denote the allocation that

maximizes fℓ(·) − fℓ+1(·) for all ℓ ∈ [k]. We say that (f1, . . . , fk) are D-balanced if fk(X
∗
k) ≤

D(fℓ(X
∗
ℓ )− fℓ+1(X

∗
ℓ )) for all ℓ ∈ [k − 1].

Proposition 5. For a C-compatible and D-balanced list of functions (f1, . . . , fk), let X
∗
ℓ denote

the allocation that maximizes fℓ(·) − fℓ+1(·) for all ℓ ∈ [k] and let 1 = Q1 < Q2 < . . . < Qk be
multipliers such that (X∗1 , . . . ,X

∗
k) is compatible with (Q1f1, . . . , Qkfk). If (X1, . . . ,Xk) are such

that

Rev((Q1f1, . . . , Qkfk), (1/Q1 − 1/Q2, 1/Q2 − 1/Q3, . . . , 1/Qk), ~X)

≥ αRev((Q1f1, . . . , Qkfk), (1/Q1 − 1/Q2, 1/Q2 − 1/Q3, . . . , 1/Qk), ~X
∗),

then at least one of {X1, . . . ,Xk} is an
(

α− (1−α)D
k−1

)

-approximation18 to the SADP instance

(f1, . . . , fk).

Proof of Proposition 5: Using Observation 5, we obtain the following chain of inequalities:

k
∑

ℓ=1

fℓ(Xℓ)− fℓ+1(Xℓ) ≥ Rev((Q1f1, . . . , Qkfk), (1/Q1 − 1/Q2, 1/Q2 − 1/Q3, . . . , 1/Qk), ~X)

≥ αRev((Q1f1, . . . , Qkfk), (1/Q1 − 1/Q2, 1/Q2 − 1/Q3, . . . , 1/Qk), ~X
∗)

= α

k
∑

ℓ=1

(fℓ(X
∗
ℓ )− fℓ+1(X

∗
ℓ ))

18α− (1−α)D
k−1

= 1 when α = 1.

22



Rearranging, we can get:

k−1
∑

ℓ=1

fℓ(Xℓ)− fℓ+1(Xℓ) ≥ α

(

k−1
∑

ℓ=1

fℓ(X
∗
ℓ )− fℓ+1(X

∗
ℓ )

)

+ αfk(X
∗
ℓ )− fk(Xℓ)

≥ α

(

k−1
∑

ℓ=1

fℓ(X
∗
ℓ )− fℓ+1(X

∗
ℓ )

)

− (1 − α)fk(X
∗
ℓ )

Now, because (f1, . . . , fk) is D-balanced, we have fk(X
∗
k) ≤ D(fℓ(X

∗
ℓ )−fℓ+1(X

∗
ℓ )) for all ℓ, and

therefore fk(X
∗
k) ≤

D
k−1

(

∑k−1
ℓ=1 fℓ(X

∗
ℓ )− fℓ+1(X

∗
ℓ )
)

. Using this, we can again rewrite to obtain:

k−1
∑

ℓ=1

fℓ(Xℓ)− fℓ+1(Xℓ) ≥

(

α−
(1− α)D

k − 1

)

(

k−1
∑

ℓ=1

fℓ(X
∗
ℓ )− fℓ+1(X

∗
ℓ )

)

(2)

As choosing the null allocation is always allowed, fℓ(X
∗
ℓ ) − fℓ+1(X

∗
ℓ ) ≥ 0 for all ℓ ∈ [k].

Now it is easy to see that in order for Equation (2) to hold, there must be at least one ℓ with

fℓ(Xℓ) − fℓ+1(Xℓ) ≥
(

α− (1−α)D
k−1

)

(fℓ(X
∗
ℓ ) − fℓ+1(X

∗
ℓ )). Such an Xℓ is clearly an

(

α− (1−α)D
k−1

)

-

approximation to the desired SADP instance.✷

With Proposition 5, we are now ready to state our reduction from SADP to MDMDP.

Theorem 7. Let A be an α-approximation algorithm for MDMDP(F ,V∗).19 Then an approximate
solution to any C-compatible instance (f1, . . . , fk) of SADP(F ,V) can be found in polynomial time
plus one black-box call to A. The solution has the following properties:

1. (Quality) If (f1, . . . , fk) is D-balanced, then the solution obtains an
(

α− (1−α)D
k−1

)

-approximation.

2. (Bit Complexity) If b is an upper bound on the bit complexity of fj(X), then b + C is an
upper bound on the bit complexity of tj(X) for any tj input to A and any X ∈ F , and every
probability input to A has bit complexity C.

Theorem 7 shows that there is a complete circle of reductions from MDMDP to SADP and
back. In fact, the circle of exact reductions is complete even if we restrict SADP to instances with
k = 2. The reduction from SADP to MDMDP is not quite approximation preserving, but it is
strong enough for us to show hardness of approximation for submodular bidders in the following
section.

B.3 Approximation Hardness for Submodular Bidders

We begin this section by defining submodularity. There are several known equivalent definitions for
submodularity. The one that will be most convenient for us is known as the property of diminishing
returns.

Definition 7. (Submodular Function) A function f : 2S → R is said to be submodular if for all
X ⊂ Y ⊂ S, and all x /∈ Y , we have:

f(X ∪ {x}) − f(X) ≥ f(Y ∪ {x})− f(Y )

Definition 8. (Value Oracle) A value oracle is a black box that takes as input a set S and outputs
f(S).

19Note that if V is closed under addition and scalar multiplication then V∗ = V.
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Definition 9. (Demand Oracle) A demand oracle is a black box that takes as input a vector of
prices p1, . . . , pn and outputs argmaxS⊆[n]{f(S)−

∑

i∈S pi}.

Definition 10. (Explicit Representation) An explicit representation of f is an explicit description
of a turing machine that computes f .

We continue now by providing our hard SADP instance. Let S1, . . . , Sk be any subsets of [n]
with |Si| ≤ |Sj| for all i ≤ j. Define fi : 2

[n] → R as the following:

fi(S) =

{

2n|S| − |S|2 : S /∈ {S1, . . . , Si}

2n|S| − |S|2 − 1 + j
2i : S = Sj ∀j ∈ [i]

Lemma 2. Each fi defined above is a monotone submodular function.

Proof of Lemma 2: Consider any X ⊂ Y , and any x /∈ Y . Then:

fi(X ∪ {x})− fi(X) ≥ 2n(|X| + 1)− (|X| + 1)2 − 1− 2n|X|+ |X|2 = 2n− 2|X|−2

fi(Y ∪ {x})− fi(Y ) ≤ 2n(|Y |+ 1)− (|Y |+ 1)2 − 2n|Y |+ |Y |2+1 = 2n− 2|Y |

As X ⊂ Y , we clearly have |X| < |Y |, and therefore fi(X ∪ {x}) ≥ fi(Y ∪ {x}), so fi is
submodular. Furthermore, as |X| ≤ n always, fi is monotone. ✷

Proposition 6. For any i ∈ [n− 1], Si+1 maximizes fi(·)− fi+1(·).

Proof of Proposition 6: For any S /∈ {S1, . . . , Si+1}, fi(S)−fi+1(S) = 0. For any Sj ∈ {S1, . . . , Si},
fi(Sj)− fi+1(Sj) =

j
2i −

j
2i+2 < 1

2 . But fi(Si+1)− fi+1(Si+1) =
1
2 , so Si+1 maximizes fi(·)− fi+1(·).

✷

The idea is in order to solve the SADP instance (f1, . . . , fk) approximately, we need to find
one of the Sis with non-neglible probability. Depending on how each fi is given as input, this may
either be easy (if it is given in the form specified above), impossible (if it is given as a value or
demand oracle), or computationally hard (if it is given via an arbitrary explicit representation).
Impossibility for value and demand oracles is straight-forward, and proved next. The computational
hardness result requires only a little extra work.

Lemma 3. Let S = {S1, . . . , Sa} be subsets chosen uniformly at random (without replacement)
from all subsets of [n], then listed in increasing order based on their size. Then no algorithm exists

that can guarantee an output of S ∈ S with probability a(c+1)
2n−c given only c value or demand oracle

queries of f1, . . . , fk.

Proof of Lemma 3: For any sequence of c value queries, the probability that none of them guessed
a set S ∈ S is at least 1 − ac/(2n − c). For a deterministic algorithm using c value queries, if
it has never successfully queried an element in S during the execution, then the probability of
success is no more than a/(2n − c). Using union bound, we know that the probability of success
for any deterministic algorithm is at most a(c + 1)/(2n − c). By Yao’s Lemma, this also holds for
randomized algorithms.

A similar argument shows that the same holds for demand queries as well. First, let’s understand
how demand queries for f0 (f0(S) = 2n|S| − |S|2) and fi differ. Consider any prices p1, . . . , pn, and
let S = argmax{f0(S)−

∑

i∈S pi}. If S /∈ S, then because fa(S) = f0(S) and fa(S
′) ≤ f0(S

′) for all
S′, we also have S = argmax{fa(S)−

∑

i∈S pi}. If other words, if the prices we query are such that
a demand oracle for f0 would return some S /∈ S, we have learned nothing about S other than that
it does not contain S. From here we can make the exact same argument in the previous paragraph
replacing the phrase “query some S ∈ S” with “query some prices p1, . . . , pn such that a demand
oracle for f0 would return some S ∈ S.” ✷
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Corollary 8. For any constants c, d, no (possibly randomized) algorithm can guarantee a 1
nc -

approximation to SADP(2[n],monotone submodular functions) in time (kn)d, as long as k ≤ nc′ for
some constant c′, if the functions are given via a value or demand oracle.

Proof of Corollary 8: Consider the input f1, . . . , fk chosen according to Lemma 3. Therefore
by Proposition 6, in any 1

nc -approximation to this SADP instance necessarily finds some Si with
probability at least 1

nc . Lemma 3 exactly says that this cannot be done without at least 2n/k >>
(kn)d queries. ✷

Corollary 8 shows that SADP is impossible to approximate within any polynomial factor for
submodular functions given via a value or demand oracle. We continue now by showing compu-
tational hardness when the functions are given via an explicit representation. First, let g be any
correspondence between subsets of [n] and integers in [2n] so that |S| > |S′| ⇒ g(S) > g(S′).20

Next, let P denote any NP-hard problem with verifier V , and let p be a constant so that any “yes”
instance of P of size m has a bitstring witness of length mp. For a given n, k, and specific instance
P ∈ P of size (n− log k)1/p, we define:

fP
i (S) =

{

2n|S| − |S|2 − 1 + j
2i : (j−1)2n

k < g(S) ≤ j2n

k ≤
i2n

k and V
(

P, (g(S) mod 2n

k )
)

= “yes′′

2n|S| − |S|2 : otherwise

Lemma 4. If P is a “yes” instance of P, then any α-approximation to the SADP instance f1, . . . , fk
necessarily finds a witness for P with probability at least α.

Proof of Lemma 4: It is clear that if P is a “yes” instance of P, then P has a witness of length
(n − log k), and therefore there is some x ≤ 2n/k such that V (P, x) = “yes.′′ Therefore, we would
have fP

i (g−1(x + i2n/k)) = 2n|S| − |S|2, but fP
i+1(g

−1(x + i2n/k)) = 2n|S| − |S|2 − 1
2 . It is also

clear that in order to have fP
i (S) − fP

i+1(S) > 0, we must have V (P, (g(S) mod 2n/k)) = “yes′′.
In other words, if P is a “yes” instance of P, any α-approximation to the SADP instance f1, . . . , fk
must find a witness for P with probability at least α. ✷

Corollary 9. Unless NP = RP , for any constants c, d no (possibly randomized) algorithm can
guarantee a 1

nc -approximation to SADP(2[n],monotone submodular functions) in time (kn)d, as long

as k ≤ nc′ for some constant c′, even if the functions are given explicitly.

Proof of Corollary 9: If we could obtain a 1
nc -approximation to SADP(2[n],monotone submodular

functions) in time (kn)d ≤ nc′d+d, then for any “yes” instance P ∈ P, we could find a witness with
probability at least 1

nc in time nc′d+d by Lemma 4. By running nc independent trials, we could

amplify this probability to 1/e in time nc′d+d+c. So we would have an RP algorithm for P. ✷

We combine Corollaries 8 and 9 below into one theorem.

Theorem 8. As long as k ≤ nc′ for some constant c′, the problem SADP(2[n],monotone submodular
functions) is:

1. Impossible to approximate within any 1/poly(n)-factor with only poly(k, n) value oracle queries.

2. Impossible to approximate within any 1/poly(n)-factor with only poly(k, n) demand oracle
queries.

20Such a g can be implemented efficiently by ordering subsets of [n] first by their size, and then lexicographically, and
letting g(S) be the rank of S in this ordering. The rank of S in this ordering can be computed by easy combinatorics
plus a simple dynamic program.
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3. Impossible to approximate within any 1/poly(n)-factor given explicit access to the input func-
tions in time poly(k, n), unless NP = RP .

Finally, we conclude this section by showing that the classes which we have just shown to be
hard for SADP can be used via the reduction of Theorem 7.

Lemma 5. All SADP instances defined in this section are 2k(1+ log k + log n)-compatible and
2n2-balanced.

Proof of Lemma 5: That each instance is 2n2-balanced is easy to see: fk([n]) = n2, and for all i we
have maxS{fi(S) − fi+1(S)} =

1
2 . To see that each instance is C-compatible, set Qi = (2kn)2i−2.

Then it is easy to see that the maximum welfare obtainable by any matching that only uses
types Q1f1 through Qifi obtains welfare at most n2iQi. In addition, the difference in value of
Qi+1fi+1 between two outcomes is at least Qi+1/(2i+ 2) ≥ Qi+1/(2k) if it is non-zero. Therefore,
the minimum non-zero difference between the value of Qi+1fi+1 for two allocations is larger than
the maximum possible difference in welfare of all types Q1f1 through Qifi for two matchings of
allocations. As this holds for all i, this means that the max-weight matching of any set of allocations
S to types {Qifi, . . . , Qjfj} will necessarily match Qjfj to its favorite allocation in S, then Qj−1fj−1
to its favorite of what remains, etc.

So let (S1, . . . , Sk) be any sets such that fi(Si+1) − fi(Si) = 1
2 . It is not hard to verify that

|S1| ≤ |S2| ≤ . . . ≤ |Sk|, and fi(Sj) is monotonically increasing in j for any i. The reason-
ing above immediately yields that the max-weight matching of allocations (Si, . . . , Sj) to types
(Qifi, . . . , Qjfj) necessarily awards Sℓ to Qℓfℓ for all ℓ, as fi, so (S1, . . . , Sk) is cyclic monotone
with respect to (Q1S1, . . . , QkSk). Furthermore, the same reasoning immediately yields that the
max-weight matching of allocations (Si, . . . , Sj−1) to types (Qi+1fi+1, . . . , Qjfj) awards Sℓ to type
Qℓ+1fℓ+1 for all ℓ, so (S1, . . . , Sk) is also compatible with (Q1f1, . . . , Qkfk). It is clear that all Qi are
integers less than (4k2n2)k−1 ≤ 22k(1+ log k+logn), so (f1, . . . , fk) are 2k(1+ log k+log n)-compatible.
✷

Corollary 10. The problem MDMDP(2[n],monotone submodular functions) (for k = |T1| = poly(n))
is:

1. Impossible to approximate within any 1/poly(n)-factor with only poly(k, n) value oracle queries.

2. Impossible to approximate within any 1/poly(n)-factor with only poly(k, n) demand oracle
queries.

3. Impossible to approximate within any 1/poly(n)-factor given explicit access to the input func-
tions in time poly(k, n), unless NP = RP .

Proof of Corollary 10: For any constant c, let k = nc+2 + 1, if we can find an 2/nc-approximate
solution to MDMDP in polynomial time, we can find an 1/nc-approximate solution to SADP by
Theorem 7, which would contradict Theorem 8. ✷

C General Objectives (Complete)

Here we give a complete description and proof of our reduction for general objectives. We follow
the same outline as that of Section 3: In Section C.1, we write a poly-size linear program that finds
the optimal implicit form provided that we have a separation oracle for F (F ,D,O). In Section C.2
we show that any poly-time α-approximation algorithm for SADP(F ,V,O) implies a poly-time
weird separation oracle for αF (F ,D,O), and therefore a poly-time α-approximation algorithm for
MDMDP(F , V, O).
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C.1 Linear Programming Formulation

We now show how to write a poly-size linear program to find the implicit form of a mechanism
that solves the MDMDP. Similar to revenue, the idea is that we will search over all feasible, BIC,
IR implicit forms for the one that maximizes O in expectation. We first show that F (F ,D,O) is
always a convex region, then state the linear program and prove that it solves MDMDP.

Lemma 6. F (F ,D,O) is a convex region.

Proof of Lemma 6: Consider any two feasible implicit forms ~πI
1 and ~πI

2 . Then there exist cor-
responding mechanisms M1 = (A1, P1) and M2 = (A2, P2) with ~π(Mi) = ~πi, ~P (Mi) = ~Pi and
πO(Mi) ≥ (πO)i. So consider the mechanism that runs M1 with probabilty c and M2 with proba-
bility 1 − c. This mechanism clearly has allocation and price components ~π(cM1 + (1 − c)M2) =
c~π1 + (1 − c)~π2 and ~P (cM1 + (1 − c)M2) = c ~P1 + (1 − c)~P2. Also, because O is concave, we must
have πO(cM1 + (1 − c)M2) ≥ cπO(M1) + (1 − c)πO(M2) ≥ c(πO)1 + (1 − c)(πO)2. Therefore, the
mechanism cM1 + (1 − c)M2 bears witness that the implicit form c~πI

1 + (1 − c)~πI
2 is also feasible,

and F (F ,D,O) is necessarily convex. ✷

Variables:

• πi(ti, t
′
i), for all bidders i and types ti, t

′
i ∈ Ti, denoting the expected value obtained by bidder

i when their true type is ti but they report t′i instead.

• Pi(ti), for all bidders i and types ti ∈ Ti, denoting the expected price paid by bidder i when
they report type ti.

• πO, denoting the expected value of O.

Constraints:

• πi(ti, ti)− Pi(ti) ≥ πi(ti, t
′
i)− Pi(t

′
i), for all bidders i, and types ti, t

′
i ∈ Ti, guaranteeing that

the implicit form (πO, ~π, ~P ) is BIC.

• πi(ti, ti)− Pi(ti) ≥ 0, for all bidders i, and types ti ∈ Ti, guaranteeing that the implicit form
(πO, ~π, ~P ) is individually rational.

• – General O: (πO, ~π, ~P ) ∈ F (F ,D,O), guaranteeing that the implicit form (πO, ~π, ~P ) is
feasible.

– Allocation-only O: (πO, ~π) ∈ F (F ,D,O), guaranteeing that the implicit form (πO, ~π, ~P )
is feasible.

– Price-only O: (πO, ~P ) ∈ F (F ,D,O) and ~π ∈ F (F ,D), guaranteeing that the implicit
form (πO, ~π, ~P ) is feasible.

Maximizing:

• πO, the expected value of O when played truthfully by bidders sampled from D.

Figure 3: A linear programming formulation for the general MDMDP.

Observation 6. Any α-approximate solution to the linear program of Figure 3 corresponds to a
feasible, BIC, IR implicit form whose expected value of O is at least an α-fraction of the optimal
obtainable expected value of O by a feasible, BIC, IR mechanism.

Proof. Same as Observation 1.
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Corollary 11. The program in Figure 3 is a linear program with 1+
∑

i∈[m](|Ti|
2 + |Ti|) variables.

In addition, if b is an upper bound on the bit complexity of the extreme points of F (F ,D,O), then
with black-box access to a weird separation oracle, WSO, for αF (F ,D,O), the implicit form of
an α-approximate solution to MDMDP can be found in time polynomial in

∑

i∈[m] |Ti|, b, and the
runtime of WSO on inputs with bit complexity polynomial in

∑

i∈[m] |Ti|, b.

Proof. It is clear that the variable count is correct, and that the BIC and IR constraints are linear.
By Lemma 6, F (F ,D,O) is a convex region. If in addition b upper bounds the bit complexity of
the extreme points of F (F ,D,O), then F (F ,D,O) must indeed be a polytope (as there can only
be finitely many extreme points). It is also clear that the objective function is linear.

That an α-approximate solution can be found using WSO is a consequence of Corollary 7.
Denote by ~π1 the optimal solution to the LP in Figure 3, ~π2 the optimal solution after replacing
F (F ,D,O) with αF (F ,D,O) and ~π3 the optimal solution after replacing F (F ,D,O) with WSO
for αF (F ,D,O). Denote by c1, c2, and c3 the πO component of each. It is easy to see that α~π1 is
a feasible solution to the LP using αF (F ,D,O): α~π1 is in αF (F ,D,O) by definition, and the BIC
and IR constraints are invariant to scaling. Furthermore, it is clear that the objective component
of α~π1 is exactly αc1. We may therefore conclude that c2 ≥ αc1. As WSO is a weird separation
oracle for αF (F ,D,O), Corollary 7 guarantees that c3 ≥ c2 ≥ αc1, and that ~π3 can be found
using the same parameters as a valid separation orcale for αF (F ,D,O). So using Theorem 6 and
replacing the running time of SO with the running time of WSO, we obtain the desired running
time. Finally, by Observation 6, ~π3 corresponds to the implicit form of an α-approximate solution
to MDMDP.

C.2 Reduction from MDMDP to SADP

Based on Corollary 11, the only obstacle to solving the MDMDP is obtaining a separation ora-
cle for F (F ,D,O) (or “weird” separation oracle for αF (F ,D,O)). In this section, we again use
Theorem 1 to obtain a weird separation oracle for αF (F ,D,O) using only black box access to an
α-approximation algorithm for SADP.

Again, we can apply Theorem 1 as long as we understand what it means to compute ~x · ~w in our
setting. Recall that ~x is some implicit form ~πI , so the direction ~w has components wO, wi(ti, t

′
i)

for all i, ti, t
′
i, and Wi(ti) for all i, ti. We first prove the analogue of Proposition 1 below, showing

that ~πI · ~w can be interpreted as maximizing the expected value of a virtual objective.
In the proof of Proposition 7, as well as the remainder of this section, we will be considering

directions that may assign a negative multiplier wO to the objective component of an implicit
form. However, we would really like not to have to consider instances of SADP that also have
a negative multiplier in front of the objective. Fortunately, this can be achieved without much
work. For the remainder of the section, we will denote by the “corresponding implicit form” of a
mechanism exactly the implicit form ofM if wO > 0, or the feasible implicit form (0, ~π(M), ~P (M)) if
wO < 0. For any feasible implicit form ~πI

0 = (x, ~π(M), ~P (M)), it is clear that both (0, ~π(M), ~P (M))
and (πO(M), ~π(M), ~P (M)) are feasible, and that the corresponding implicit form ~πI of M has
~πI · ~w ≥ ~πI

0 · ~w.

Proposition 7. Let ~w be a direction in [−1, 1]1+
∑

i(|Ti|
2+|Ti|), and let ŵO = wO if wO > 0, otherwise

ŵO = 0. Define the virtual objective O′~w as:

O′~w(~t
′,X, P ) = ŵO · O(~t

′,X, P ) +
∑

i

∑

ti∈Ti

wi(ti, t
′
i)

Pr[t′i])
· ti(X) +

∑

i

Wi(t
′
i)E[Pi],
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Then any mechanism that obtains an α-approximation to maximizing the expected value of the
virtual objective O′~w corresponds to an implicit form ~πI that is an α-approximation to maximizing
~x · ~w over ~x ∈ F (F ,D,O).

When O is allocation-only, we may remove the pricing rule entirely, getting:

O′~w(~t
′,X) = ŵO · O(~t

′,X) +
∑

i

∑

ti∈Ti

wi(ti, t
′
i)

Pr[t′i])
· ti(X)

When O is price-only, and we are looking at the price-only feasible region (for (πO, ~P )), we may
remove the allocation rule entirely, getting:

O′~w(P ) = ŵO · O(P ) +
∑

i

Wi(t
′
i)E[Pi]

When O is price-only and we are looking at the feasible region (for (~π)), we get back the same
virtual welfare function used in Proposition 1 for revenue:

O′~w(~t
′,X) =

∑

i

∑

ti∈Ti

wi(ti, t
′
i)

Pr[t′i])
· ti(X)

Proof. Proposition 1 shows that
∑

i

∑

ti,t′i
wi(ti, t

′
i) · πi(ti, t

′
i) is exactly the virtual welfare of an

allocation with implicit form ~πI computed when the virtual type of t′i is
∑

ti∈Ti

wi(ti,t′i)
Pr[t′

i
]) · ti(·).

Furthermore,
∑

i

∑

ti
Wi(ti)Pi(ti) is clearly just a weighted sum of expected payments (which could

be interpreted as virtual revenue). Finally, if wO ≤ 0, any optimal solution may set πO = 0, so this
term will contribute nothing. If wO > 0, then any optimal solution will set πO = πO(M), and this
term will contribute exactly πO(M) · wO.

Therefore, summing all three terms together we see that the optimal implicit form corre-
sponds to some mechanism M that maximizes the expected value of ŵO · O + virtual welfare +
virtual revenue , which is exactly O′~w. Furthermore, it is easy to see that, in fact, for any mech-
anism M , the corresponding implicit form ~πI

0 of M satisfies ~πI
0 · ~w = the expected value of O′~w

obtained by M . Therefore, if M is an α-approximation to maximizing O′~w in expectation, the
corresponding implicit form is an α-approximation to maximizing ~x · ~w over F (F ,D,O).

That the simplifications hold for allocation-only and price-only objectives is obvious.

Recall again that Theorem 1 requires an algorithm A that takes as input a direction ~w and
outputs a ~πI with ~w · ~πI ≥ αmax~x∈F (F ,D,O){~w · ~x}. By Proposition 7 above, we know that this is
exactly asking for a mechanism that obtains an α-fraction of the optimal expected value for O′~w over
all feasible mechanisms. Next, we provide an analogue to Corollary 2 of Section 3 in Corollary 12
below, which relates the per-profile performance of a mechanism M to ~w · ~πI(M).

Corollary 12. Let M be a mechanism that on profile (t′1, . . . , t
′
m) chooses a (possibly randomized)

allocation X ∈ F and (possibly randomized) pricing scheme P such that

O′~w(~t
′,X, P ) ≥ α max

X′∈F ,P ′
{O′~w(~t

′,X, P )}

Then the corresponding implicit form ~πI satisfies:

~πI · ~w ≥ α max
~x∈F (F ,D,O)

{~x · ~w}
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Proof. Exactly the same as Corollary 2, but using Proposition 7 instead of Proposition 1: if a
mechanism achieves an α-fraction of the optimal value of O′~w on every profile, then it clearly
obtains an α-fraction of the optimal expected value of O′~w.

With Corollary 12, we now want to study the problem of maximizing virtual welfare on a given
profile. This turns out to be exactly an instance of SADP.

Proposition 8. Let ~w ∈ [−1, 1]1+
∑

i(|Ti|
2+|Ti|) with wO ≥ 0. Let also t′i, ti ∈ V for all i, t′i, ti. Then

any X ∈ F , P that is an α-approximation to the SADP(F ,V,O) on input:

f1 =
∑

i

∑

ti∈Ti|wi(ti,t′i)>0

wi(ti, t
′
i)

Pr[t′i])
· ti(X)

f2 =
∑

i

∑

ti∈Ti|wi(ti,t′i)<0

wi(ti, t
′
i)

Pr[t′i])
· ti(X)

gi = t′i

ci = Wi(t
′
i)

c0 = ŵO

is also an α-approximation for maximizing O′~w. That is:

O′~w(~t
′,X, P ) ≥ α · max

X′∈F ,P
{O′~w(~t

′,X ′, P )}

Proof. It is clear that (f1, f2, ~g,~c, c0) is a valid input to SADP(F ,V,O). The remainder of the proof
is exactly the same as that of Proposition 2.

Corollary 13. Let G be any α-approximation algorithm for SADP(F ,V,O). Let also M be the
mechanism that, on profile (t′1, . . . , t

′
m) chooses the allocation and price rule G(f1, f2, ~g,~c, c0) (where

f1, f2, ~g,~c, c0 are defined as in Proposition 8). Then the corresponding implicit form ~πI satisfies:

~πI · ~w ≥ α max
~x∈F (F ,D,O)

{~x · ~w}

Proof. Combine Corollary 12 and Proposition 8.

At this point, we would like to just let A be the algorithm that takes as input a direction ~w and
computes the implicit form prescribed by Corollary 13 . Corollary 13 shows that this algorithm
satisfies the hypotheses of Theorem 1, so we would get a weird separation oracle for αF (F ,D,O).
The same situation as in Section 3 arises, so we must use the same approach of [11] and define
D′ to be a uniform distribution over multi-set over polynomially-many profiles sampled from D.
Formally, our algorithm for MDMDP is stated as Algorithm 2 below.

We now proceed to prove its correctness. The only big remaining step is to relate the bit
complexity of the objective, the probability distribution, and the values to the bit complexity of
the extreme points of F (F ,D′,O). Recall that Corollary 11 only guarantees that the desired LP can
be solved in time polynomial in the bit complexity of the extreme points of F (F ,D′,O). However,
Theorem 4 claims an algorithm whose runtime is polynomial in b, which upper bounds the bit
complexity of O, ti(X), and Pr[ti] for all i, ti ∈ Ti,X ∈ F . It’s not hard to imagine that these
two bit complexities can’t differ by much, and indeed this is the case. Lemma 7 below states this
formally.
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Algorithm 2 Algorithm to solve MDMDP(F ,V,O):

1: Input: type spaces Ti for i ∈ [m],, distributions Di over Ti, an error ǫ, and black-box access to
G, a (possibly randomized) α-approximation algorithm for SADP(F ,V,O).

2: Obtain D′ as the uniform distribution over a multi-set of profiles sampled from D in the manner
described in Section 5.2 of [11].

3: Modify G to obtain G′ as prescribed in Appendix G.2 of [12]. G′ is a deterministic algorithm.
4: Define A to, on input ~w ∈ [−1, 1]1+

∑
i(|Ti|2+|Ti|), compute the implicit form prescribed in Corol-

lary 13 using G′ and D′.
5: Solve the linear program in Figure 3 using the weird separation oracle obtained from A using

Theorem 1. Call the output (πO, ~π, ~P ), and let ~w1, . . . , ~wl be the directions guaranteed by
Theorem 1 to be output by the weird separation oracle.

6: Solve the linear system ~πI =
∑

j∈[l] cjA(~wj) to write ~πI as a convex combination of A(~wj).

7: Output the following mechanism: First, randomly select a ~w ∈ [−1, 1]1+
∑

i(|Ti|2+|Ti|) by choos-
ing ~wj with probability cj . Then, choose the allocation output by G′ on the SADP input
corresponding to ~w.

Lemma 7. If b is an upper bound on the bit complexity of O, Pr[ti], and ti(X), for all i, ti ∈
Ti,X ∈ F , then all extreme points of F (F ,D′,O) have bit complexity poly(b,

∑

i |Ti|).

Proof of Lemma 7: By Proposition 7, we know that all extreme points of F (F ,D′,O) correspond
to virtual objective maximizers. We also know that virtual objective maximizers simply maximize
the virtual objective on every profile. So let’s try to understand what the picture looks like for a
single profile by figuring out what kinds of allocations can possibly maximize a virtual objective.

For a single profile, recall that the feasible choices combine any randomized allocation in ∆(F)
with any pricing scheme that charges each bidder i some price in [0, 1] (recall that this assumption
was made w.l.o.g. in the preliminaries of Section 5.1). We will represent these constraints as a
polytope F ′ in |F|+m+1 dimensions using the following variables: Q(X) for all X ∈ F denoting
the probability that X is chosen, Pi for all i ∈ [m] denoting the price paid by bidder i, and VO,
denoting the value of O. We say that a vector denoting a randomized allocation, price vector, and
value of O is feasible if it corresponds to an actual distribution over elements of F , charges each
bidder a price in [0, 1], and correctly computes (or underestimates) the value of O. Specifically,
this corresponds to the following constraints:

1. Q(X) ≥ 0 for all X ∈ F . This guarantees that all probabilities are non-negative. There are
|F| of these constraints.

2.
∑

X∈F Q(X) = 1. This guarantees that all probabilities sum to one. There is one of these
constraints.

3. 0 ≤ Pi ≤ 1 for all i ∈ [m]. This guarantees that all prices are bounded. There are m of these
constraints.

4. 0 ≤ VO ≤ O(Q,P ). This guarantees that the value of O is correctly underestimated. There
is one of these constraints.

Observe now that all of these constraints are linear except for 4). In fact, because we know
that O is concave (and therefore O(Q,P ) = min~c∈S{~c · (Q,P )} for some (possibly infinite) set S of
linear functions), we can rewrite 4) as the intersection of several linear constraints:

0 ≤ VO ≤ ~c · (Q,P ) for all ~c ∈ S. There are |S| of these constraints.
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We have now explicitly written the halfspaces whose intersection defines F ′, and therefore all
extreme points of F ′ lie in the intersection of |F|+m+1 of the corresponding hyperplanes. Observe
now that there are two kinds of hyperplanes: those of the form Q(X) = 0 (from 1) above), and
everything else. The total number of constraints not from 1) above is just 2m + 2 + |S|, so the
total number of such corresponding hyperplanes is certainly polynomial in

∑

i |Ti|, |S|. With this
observation, we can bound the bit complexity of extreme points of F ′.

Any extreme point is the solution to a system of equations that immediately forces all except
for poly(

∑

i |Ti|, |S|) variables to be 0, and whose remaining poly(
∑

i |Ti|, |S|) variables solve a
system of poly(

∑

i |Ti|, |S|) equations whose coefficients all have bit complexity b. Therefore, we
may conclude21 that all extreme points of F ′ have coordinates with bit complexity poly(b,

∑

i |Ti|).
Now, it is easy to see that every virtual objective is a linear function over F ′, and therefore all
virtual objective maximizers are extreme points of F ′. In conclusion, we have shown that on every
profile, all virtual objective maximizers correspond to randomized allocations that only assign
probabilities and prices of bit complexity poly(b,

∑

i |Ti|), and whose objective value also has bit
complexity poly(b,

∑

i |Ti|).
The last step is now to understand how this relates to the bit complexity of implicit forms of

mechanisms. We have just shown above that every virtual objective maximizer assigns probabilities
and prices of bit complexity poly(b,

∑

i |Ti|), and obtains an objective value of bit complexity
poly(b,

∑

i |Ti|) on every profile. The expected price paid by bidder i when reporting type ti is
clearly just a convex combination of the prices charged on each profile, where each coefficient
corresponds to the probability that the profile is chosen. Each such probability has bit complexity
poly(b,

∑

i |Ti|) (actually it is much smaller because D′ is a uniform distribution), and because
there are only poly(b,

∑

i |Ti|) profiles, the expected price paid by bidder i when reporting ti in any
virtual objective maximizer is the sum of poly(b,

∑

i |Ti|) terms of bit complexity poly(b,
∑

i |Ti|).
Therefore, the bit complexity of the expected price paid by bidder i when reporting type ti is
poly(b,

∑

i |Ti|). Similarly, the expected value of bidder i of type t′i when reporting type ti is just
a convex combination of the values of t′i for the randomized allocations awarded on each profile
where bidder i’s type is ti. As the value of t′i for any allocation in F has bit complexity b, and for
every profile the probabilities assigned to each allocation has bit complexity poly(b,

∑

i |Ti|), each
of these values will also have bit complexity poly(b,

∑

i |Ti|). Again, the coefficients in the convex
combination correspond to the probability that the profile is chosen, which has bit complexity
poly(b,

∑

i |Ti|), so the expected value of bidder i with type t′i for reporting ti in any virtual objective
maximizer is also poly(b,

∑

i |Ti|). Finally, the value of πO is just the expected value of VO over all
profiles, which is again a convex combination using coefficients of bit complexity poly(b,

∑

i |Ti|). So
πO also has bit complexity poly(b,

∑

i |Ti|) in any virtual objective maximizer. We have now shown
that every component of the implicit form of any virtual objective maximizer has bit complexity
poly(b,

∑

i |Ti|), and therefore all extreme points of F (F ,D′,O) have bit complexity poly(b,
∑

i |Ti|)
as desired.

✷

Proof of Theorem 4: The only part of the theorem that is not an obvious consequence of previous
lemmas and corollaries is that the final mechanism output matches the desired implicit form. Recall
that each ~πI

j = A(~wj) has a corresponding mechanism Mj with ~π(Mj) = ~πj, ~P (Mj) = ~Pj , and
πO(Mj) ≥ (πO)j . The mechanism output is exactly M =

∑

j cjMj . So the implicit form of this

mechanism satisfies ~π(M) = ~π, ~P (M) = ~P , and πO(M) ≥
∑

j cjπO(Mj) ≥ πO because O is
concave. Therefore, the mechanism output is at least as good as the implicit form promises (and
perhaps better).

21Recall that we defined the bit complexity b of O in a way so that b ≥ |S| always.
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✷

D Omitted Proofs from Section 3.1

Proof of Lemma 1: Every randomized mechanism is a distribution over deterministic mechanisms.
Furthermore, the implicit form of a distribution over deterministic mechanisms is just the corre-
sponding convex combination of their implicit forms. So if we let S denote the set of implicit
forms of deterministic mechanisms, F (F ,D) is contained in the convex hull of S. Furthermore,
any implicit form that is a convex combination of points in S can be implemented by a mechanism
that is the corresponding distribution over the corresponding mechanisms. Therefore, F (F ,D) is
exactly the convex hull of S. ✷

Proof of Observation 1: It is clear that any point output can be interpreted as an implicit form. It is
also clear that the feasible region is exactly the set of feasible, BIC, IR implicit forms. It is also clear
that the objective function evaluated at a point is just the expected revenue of the corresponding
implicit form. Finally, it is clear that every feasible, BIC, IR mechanism has a feasible, BIC, IR
implicit form. So the optimal achievable value of the LP’s objective function within the feasible
region is exactly the expected revenue of the optimal feasible, BIC, IR mechanism. ✷

Proof of Corollary 1: It is clear that the variable count is correct, and that the BIC and IR
constraints are linear. By Lemma 1, F (F ,D) is a convex polytope, and therefore the entire feasible
region is a convex polytope. It is also clear that the objective function is linear. Finally, it is clear
that if b upper bounds the bit complexity of Pr[ti] and ti(X) for all i, ti ∈ Ti,X ∈ F , then all
extreme points of F (F ,D) have bit complexity poly(b,

∑

i |Ti|).
That an α-approximate solution can be found using WSO is a consequence of Corollary 7.

Denote by ~π1 the optimal solution to the LP in Figure 1, ~π2 the optimal solution after replac-
ing F (F ,D) with αF (F ,D) and ~π3 the optimal solution after replacing F (F ,D) with WSO for
αF (F ,D). Denote by c1, c2, and c3 the expected revenue obtained by each. It is easy to see that
α · ~π1 is a feasible solution to the LP using αF (F ,D): α · ~π1 is in αF (F ,D) by definition, and the
BIC and IR constraints are invariant to scaling. Furthermore, it is clear that the expected revenue
of α ·~π1 is exactly α · c1. We may therefore conclude that c2 ≥ α · c1. As WSO is a weird separation
oracle for αF (F ,D), Corollary 7 guarantees that c3 ≥ c2 ≥ α·c1, and that ~π3 can be found using the
same parameters as a valid separation oracle for αF (F ,D). So using Theorem 6 and replacing the
running time of SO with the running time of WSO, we obtain the desired running time. Finally,
by Observation 1, ~π3 corresponds to the implicit form of an α-approximate solution to MDMDP.
✷

E Omitted Details from Section 3.2

Proof of Proposition 1:

~w · ~x =
∑

i∈[m]

∑

ti∈Ti,t′i∈Ti

πi(ti, t
′
i)wi(ti, t

′
i) =

∑

i∈[m]

∑

ti∈Ti,t′i∈Ti

πi(ti, t
′
i)(wi(ti, t

′
i)/Pr[t

′
i]) Pr[t

′
i]

Now, consider any mechanism M with interim form ~π and let Xi(t
′
i) denote the (randomized)

interim allocation that bidder i receives when reporting type t′i to M . Observe that πi(ti, t
′
i) is

just ti(Xi(t
′
i)), and does not depend on the specific choice of M or Xi(t

′
i). So after making this

substitution, we have:
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~w · ~π =
∑

i∈[m],t′i∈Ti

Pr[t′i]
∑

ti∈Ti

ti(Xi(t
′
i))(wi(ti, t

′
i)/Pr[t

′
i]) (3)

Now,
∑

ti∈Ti
(wi(ti, t

′
i)/Pr[t

′
i])ti(·) is a function that takes as input an interim allocation Xi(t

′
i)

and outputs a value
∑

ti∈Ti
(wi(ti, t

′
i)/Pr[t

′
i])ti(Xi(t

′
i)). We may think of

∑

ti∈Ti
(wi(ti, t

′
i)/Pr[t

′
i])ti

as the virtual type of bidder i with type t′i, and
∑

ti∈Ti
(wi(ti, t

′
i)/Pr[t

′
i])ti(Xi(t

′
i)) as the virtual

value of that virtual type for the allocation Xi(t
′
i). Under this interpretation, ~w · ~x is summing

over all bidders i and all types t′i, the expected virtual value obtained by t′i, which is exactly the
expected virtual welfare of a mechanism with interim form ~π computed with respect to the desired
virtual types. ✷

Proof of Corollary 2: By Proposition 1, we know that ~x · ~w is exactly the virtual welfare of a
mechanism with implicit form ~x. A mechanism that obtains a α-fraction of the optimal virtual
welfare on every profile clearly obtains a α-fraction of the optimal expected virtual welfare in
expectation. ✷

Proof of Proposition 2: First, it is clear that (f1, f2) is a valid input to SADP(F ,V), as f1, f2 ∈ V
∗.

Furthermore, because only two functions are input to this instance of SADP, any X that is an
α-approximation necessarily satisfies:





∑

i

∑

ti|Ci(ti)>0

Ci(ti)ti(X)−
∑

i

∑

ti|Ci(ti)<0

−Ci(ti)ti(X)





≥α · max
X′∈F











∑

i

∑

ti|Ci(ti)>0

Ci(ti)ti(X
′)−

∑

i

∑

ti|Ci(ti)<0

−Ci(ti)ti(X
′)











.

It is easy to see that the above equation can be rearranged to the desired form. ✷

As noted in Section 3.2, at this point, we are almost ready to give our algorithm. We would
like to just let A be the algorithm that takes as input a direction ~w and computes the implicit
form prescribed by Corollary 3. Corollary 3 shows that this algorithm satisfies the hypotheses of
Theorem 1, so we would get a weird separation oracle for αF (F ,D). We noted in Section 3.2
that this could not be done trivially in an efficient manner, and elaborate below on the required
techniques to overcome this developed in [11, 12].

First, computing the implicit form prescribed in Corollary 3 would require enumerating every
profile in the support of D (and there are exponentially many of them). The obvious approach
to cope with this would be to just approximate the implicit form by sampling polynomially many
profiles from D. Unfortunately again, this approach does not work as the inconsistent error due to
sampling causes the geometry of LP solvers to fail. Luckily, however, a similar problem arises and
is solved in [11]. Simply put, the approach is to take polynomially many samples from D to form a
multi-set S, then define a new distribution D′ that samples a profile uniformly at random from S.
F (F ,D′) is still well-defined, and one might expect that it should look a lot like F (F ,D) if enough
samples are taken. This is indeed the case, as is and shown formally in Section 5.2 of [11] (to which
we refer the reader for the complete details of the approach).

Second, even after enumerating every profile, we would still have to enumerate the randomness
used in the (possibly randomized) SADP solutions output by G. We solve this problem by first
observing that we can run polynomially many independent trials of G to obtain an algorithm G′
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that obtains an (α − ǫ/poly(m))-approximation with very high probability. Then, we can fix the
randomness used ahead of time and take a union bound so that with very high probability, G′

obtains an (α − ǫ/poly(m))-approximation every time it’s queried during the algorithm. As the
randomness is fixed ahead of time, we may just treat G′ as a deterministic algorithm. This process
is discussed formally in Appendix G.2 of [12] (to which we refer the reader for the complete details
of the approach).

After these two modifications, we now have an algorithm that can find an approximately optimal
implicit form. That’s great, but how can we turn this into an actual mechanism? Luckily, Theorem 1
answers this for us. Whatever implicit form ~π is output was deemed feasible by the weird separation
oracle. Theorem 1 guarantees then that the weird separation oracle found explicit directions,
~w1, . . . , ~wl such that ~π lies within the convex hull of the A(~wj). But recall that A(~wj) is just
the implicit form of the mechanism that runs G′ on every profile, using as input the virtual types
corresponding to ~w. This exactly says that, if ~π =

∑

j cjA(~wj), the mechanism that first samples
a virtual transformation ~w, choosing ~wj with probability cj , and then runs G′ using these virtual
types has implicit form exactly ~π. With this discussion in mind, we are now ready to state formally
our reduction from MDMDP to SADP:

Algorithm 3 Algorithm to solve MDMDP(F ,V):

1: Input: type spaces Ti for i ∈ [m], distributions Di over Ti, an error ǫ, and black-box access to
G, a (possibly randomized) α-approximation algorithm for SADP(F ,V).

2: Obtain D′ as the uniform distribution over a multi-set of profiles sampled from D in the manner
described in Section 5.2 of [11].

3: Modify G to obtain G′ as prescribed in Appendix G.2 of [12]. G′ is a deterministic algorithm.
4: Define A to, on input ~w ∈ [−1, 1]

∑
i |Ti|2 , compute the implicit form prescribed in Corollary 3

using G′ and D′.
5: Solve the linear program in Figure 1 using the weird separation oracle obtained from A us-

ing Theorem 1. Call the output (~π, ~P ), and let ~w1, . . . , ~wl be the directions guaranteed by
Theorem 1 to be output by the weird separation oracle.

6: Solve the linear system ~π =
∑

j∈[l] cjA(~wj) to write ~π as a convex combination of A(~wj).

7: Output the following mechanism: First, randomly select a ~w ∈ [−1, 1]
∑

i |Ti|
2
by choosing ~wj

with probability cj . Then, choose the allocation output by G′ on the SADP input corresponding
to ~w.

F Omitted Proofs from Section 6

Proof of Observation 2: Consider two allocations X1 and X2. Then:

FMMF (~t, cX1 + (1− c)X2) = min
i
{ti(cX1 + (1− c)X2)}

≥ c ·min
i
{ti(X1)}+ (1− c) ·min

i
{ti(X2)}

= c · FMMF (~t,X1) + (1− c) · FMMF (~t,X2)

✷

Proof of Observation 3: It is easy to see that the objective function is less than O′(~g,X, f, f ′),
because O is less than FMMF (~g,X), and the rest of O′(~g,X, f, f ′) is computed correctly in
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the objective function. It is also easy to see that the maximum value of the LP is exactly
maxX∈∆(F){O

′(~g,X, f, f ′)}. Putting these together proves the observation. ✷

Proof of Corollary 4: It is clear that the variable count is correct, and that the feasible region is a
convex polytope. It is also clear that the objective function is linear. The remainder of the proof
is nearly identical to that of Corollary 1 but is included below for completeness.

That an α-approximate solution can be found using WSO is a consequence of Corollary 7.
Denote by ~X1 the optimal solution to the LP in Figure 2, ~X2 the optimal solution after replacing
∆(F) with α∆(F) and ~X3 the optimal solution after replacing ∆(F) withWSO for α∆(F). Denote
by c1, c2, and c3 the value of the objective function at each. It is easy to see that α · ~X1 is a feasible
solution to the LP using α∆(F): α · ~X1 is in α∆(F) by definition, and the remaining constraints
are invariant to scaling. Furthermore, it is clear that the value of the objective function evaluated
at α · ~X1 is exactly α ·c1. We may therefore conclude that c2 ≥ α ·c1. As WSO is a weird separation
oracle for α∆(F), Corollary 7 guarantees that c3 ≥ c2 ≥ α · c1, and that ~X3 can be found using the
same parameters as a valid separation orcale for α∆(F). So using Theorem 6 and replacing the
running time of SO with the running time of WSO, we obtain the desired running time. Finally,
by Observation 3, ~X3 corresponds to an α-approximate solution to maximizing O′(~g,X, f, f ′) over
∆(F). ✷

Proof of Observation 4: We can write the expected weight of a set sampled from X
∑

i,j Pr[(i, j) ∈

X]wij , which is exactly ~w · ~X. ✷
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